198
Views
6
CrossRef citations to date
0
Altmetric
Articles

A highly sensitive method for detection of bisphenol A in water samples based on functionalised Fe3O4@SiO2@nylon66

, , , , , , & show all
Pages 124-133 | Received 07 Sep 2016, Accepted 02 Feb 2017, Published online: 20 Feb 2017
 

ABSTRACT

A simple and sensitive method was developed for preconcentration and determination of bisphenol A (BPA) in environmental samples by high performance liquid chromatography (HPLC). The hydrophilic silicon-dioxide- and nylon66-functionalised magnetic material (Fe3O4@SiO2@nylon66) was used as a sorbent for magnetic solid-phase extraction (MSPE). With the anhydrous microemulsion reaction, the Fe3O4@SiO2@nylon66 had shown great characteristics such as good magnetic responsivity, water dispersibility and stability. Based on the materials, various extraction parameters including pH, extraction time, elution time, the number of sorbents, sample volume and elution times were optimised. The whole extraction procedure could be accomplished within 20 min and the materials could be used more than 10 times after regeneration. Under the optimised conditions, different types of water samples (Tap water, river water, sea water and underground water) were successfully analysed to verify the applicability of the proposed method. The recoveries of different samples ranged from 88.54% to 104.46%. An enrichment factor of 250 was achieved with 0.05 μg/L detection limit. Thus, the developed MSPE is a potential technique that can be used for water samples preconcentration or combined with other analytical methods for determination of BPA.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant number 30972442; Tianjin Scientific and Technology Support Program Funding Agency under Grant number 16YFZCNC00730.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplemental data

Supplemental data for this article can be accessed here.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [30972442] and Tianjin Scientific and Technology Support Program [16YFZCNC00730].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.