105
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Development of a novel and robust microprecipitation approach using cetyltrimethyl ammonium bromide (CTAB) for preconcentration and speciation of mercury in waters prior to CVAAS determination

, &
Pages 811-829 | Received 24 Mar 2018, Accepted 19 Jul 2018, Published online: 02 Aug 2018
 

ABSTRACT

A novel and simple microprecipitation method was developed for the preconcentration of ultra-trace quantities of inorganic and methyl mercury species (iHg and MeHg) prior to their determination by cold vapour atomic absorption spectrometry (CVAAS). This method is based on the formation of anionic complexes of Hg2+ with KI followed by ion-associate complex with cetyltrimethyl ammonium bromide (CTAB) that forms a fluffy precipitate in perchloric acid medium. As a result, a fluffy coagulated mass separates and collects at the top of the liquid surface with clear phase separation without need of cooling or heating or centrifugation. The ion-association complex of iHg was then extracted into surfactant-rich phase (top layer) of CTAB-perchlorate precipitate while the uncomplexed MeHg remained in the aqueous phase (bottom layer). This condition also facilitates the removal of aqueous phase by simply draining out. The fluffy mass formed was dissolved in a mixture of HNO3 and HCl which was subsequently treated with chloroform to separate the surfactant from the mixture. Then the aqueous phase containing the preconcentrated iHg was analysed for mercury by CVAAS. Key factors such as sample pH, concentration of KI and CTAB that affect the performance of the proposed microprecipitation method were thoroughly investigated. For the determination of total mercury, another fresh aliquot of water was initially adjusted to pH ~ 3.5 with perchloric acid and subjected to oxidation by using modified UV-irradiation set-up and then taken through the microprecipitation procedure. This method allows speciation of mercury with a preconcentration factor of 200 and the limits of detection (LOD) of mercury obtained for CVAAS in conjunction with the present preconcentration method was found to be 2.4 ng L−1. Average recoveries obtained with the proposed approach were found to be in the range of 96–104% with RSD values < 5%. The interfering effects of various cations and anions were also investigated. The method was successfully applied for the determination of ultra-trace quantities of mercury species in real samples such as bottled water, tap water, lake water and ground waters.

Acknowledgments

The authors are thankful to Dr. Sunil Jai Kumar, Head, NCCCM, Bhabha Atomic Research Centre, Hyderabad, for his continued support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.