449
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Design of a portable luminescence bio-tool for on-site analysis of heavy metals in water samples

, , , , , , & show all
Pages 1081-1094 | Received 21 Jan 2018, Accepted 29 Aug 2018, Published online: 24 Sep 2018
 

ABSTRACT

In this work, we report an innovative tool for heavy metal screening in water samples. This new chemiluminescent set-up screens the light generated from luminol oxidation by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). The pollutant concentrations in real water samples were calculated by studying the effect of metal ions on chemiluminescence signal. Owing to its simplicity, portability and low cost, this approach presents a real alternative to classical optical methods. It is constructed with simple materials: a black box containing a cuvette and a micro-camera. When the enzymatic reaction takes place, the luminescence is captured by the camera placed in upright position. The image can be saved automatically in a computer for further analysis using a MATLAB interface. The RGB diagram is then established to determine the analyte concentrations in the tested samples. This method was successfully applied for the determination of mercury (Hg), lead (Pb) and cadmium (Cd) in lake and field water samples. In these experiments, three concentrations of each analytes were tested (5, 25 and 50 µg/L). We noted a good proportionality between the analyte concentration and the chemiluminescent detection intensity. Detection of binary and tertiary combinations of heavy metals has been also investigated. The developed biosensor showed low detection limits for the tested heavy metals: 1, 0.7 and 0.02 for Hg2+, Pb2+ and Cd2+, respectively. Finally, excellent recoveries ranging from 98% to 104% were obtained for the HRP-inhibition assay.

Acknowledgements

Dr Akhtar Hayat likes to acknowledge HEC (Higher Education Commission of Pakistan)-Technology Development Program (TDF) project; No. 028, 2017.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the HEC (Higher Education Commission of Pakistan)-Technology Development Program [028, 2017.]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.