109
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Key factors in electromembrane microextraction systems for metals analysis in natural waters

, &
Pages 1388-1397 | Received 14 Jul 2018, Accepted 02 Oct 2018, Published online: 16 Oct 2018
 

ABSTRACT

Application of an electric potential to hollow fibre liquid phase microextraction (HF-LPME) systems previously optimised for metals preconcentration from natural waters could improve their analytical performance increasing enrichment factors and reducing operation times. Nevertheless, the effectiveness of the direct application of an electric potential to these systems may be limited due to the effects produced by other operational parameters.

In this work, the effect of a variable electric potential on the enrichment factors of four HF-LPME systems used for the analysis of trace metals in natural waters (Cd, Ni, Ag and Cu) has been studied. In addition, the effect of organic phase composition, distance between electrodes and electrodes diameter has been also studied. From the results obtained, composition of organic phase can be considered as the key factor in electromembrane (EME) systems, since its polarity determine the operational range of the applied electric potential and consequently the enrichment factor that could be achieved.

EMEs have demonstrated to be a real alternative to preconcentrate Cd, Ag and Cu from natural water samples in very short times (30 min). In fact, enrichment factors increased up to one order of magnitude if compared with HF-LPME methodology without application of an electrical potential.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

Additional information

Funding

MS would like to acknowledge the University of Cádiz for a FPI doctoral grant. This work was supported by Spanish Ministry of Economy and Competitiveness, Project  [grant number CTM2013-47549-P].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.