187
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Method development for on‑site monitoring of volatile organic compounds via portable TD‑GC-MS: evaluation of the analytical performances of HAPSITE® ER instrumentation and thermal desorption sampling media

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Received 24 May 2022, Accepted 19 Aug 2022, Published online: 18 Sep 2022
 

ABSTRACT

Determining worker exposure to hazardous volatile organic compounds (VOCs) in air at levels exceeding the Permissible Exposure Limits and Recommended Exposure Limits established by the U.S. federal agencies of Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH), respectively, will continue to be an important part of environmental and occupational health risk assessments. The purpose of this work was to develop a reliable analytical method for rapid and on-site assessments of occupational VOC exposures using field-capable thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) instrumentation (i.e. the HAPSITE® ER). The experiments involved in this study included determining TD-GC-MS parameters suitable for efficient analyte separation and quantitation on the HAPSITE® ER, determinations of analyte mass loadings that cause mass spectrometer detector saturations, generation of calibration curves, estimations of the limits of detection (LODs) and quantification (LOQs), as well as desorption efficiency and relative response factor repeatability. The LODs using Carbopack™ B and Tenax® TA sampling media were estimated and ranged from 0.2–1.9 ng and 0.045–0.3 ng, respectively. The LOQs using Carbopack™ B and Tenax TA sampling media were estimated and ranged from 1.0–6.3 ng and 0.2–1.1 ng, respectively. We have developed a reliable analytical method for chloroform, benzene, trichloroethylene, and heptane using field-portable HAPSITE® ER instrumentation and Tenax® TA sorbent media. Reliable and accurate methods were developed for chloroform and trichloroethylene using Carbopack™ B sorbent media, however, this particular sorbent hadlow desorption efficiency and insufficient repeatability in relative response factors for many analytes. Our current and ongoing work in determining the uptake rates for analytes on Tenax® TA sorbent media will make the methods described herein applicable for on-site occupational VOC exposure assessments of chloroform, benzene, trichloroethylene, and heptane using either passive or active air sampling techniques.

Acknowledgments

The authors gratefully acknowledge Ronnee Andrews and Ryan LeBouf for reviewing the draft manuscript, as well as Peter B. Shaw for statistical data analyses. The Oak Ridge Institute for Science and Education (ORISE) is also gratefully acknowledged for supporting this work.

Disclaimer

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention and the U.S. Department of Energy. Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention and the U.S. Department of Energy.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2022.2121163.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.