361
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A review on advancement of biosensors for the detection of amphetamine drug

, , , &
Received 10 Jan 2023, Accepted 05 Jun 2023, Published online: 10 Jul 2023
 

ABSTRACT

Drug misuse is a worldwide issue, so a variety of techniques are required to identify drugs of interest. Amphetamine is one such illegal drug that is abused worldwide. In the mid-19th century, when amphetamine was first synthesised, a number of its derivatives have been produced, posing a major threat to public health. Amphetamine (AMP), a class of psychiatric medications that affect the nervous system, is currently one of the most commonly misused in the black market, which leads to sickness in drug addicts causing fever, and harms social and public safety. They are Central Nervous System (CNS) stimulators that result in tachycardia, hypertension, and sensations of increased sociability, vitality, and self-assurance. A class of illegal synthetic drugs known as ‘Amphetamine-type stimulants’ (ATS) includes the stimulants amphetamine (AMP), methamphetamine (MA), and elation, such as 3,4-methylenedioxymethamphetamine (MDMA), as well as less popular substances like methcathinone, fenetylline, methylphedrine, and methylphenidate. The numerous conventional techniques for detecting amphetamine drugs are discussed in this review, including Gas Chromatography-Mass Spectrometry (GC/MS), Raman Spectroscopy, High-Performance Liquid Chromatography (HPLC), and Capillary Electrophoreses (CE). These techniques are mostly used to identify amphetamine drugs, although consume a lot of time and are not efficient in terms of cost. This review provides a comprehensive overview of recent advancements in biosensors specifically developed for the detection of amphetamine drugs such as Electrochemical sensors, Electrochemiluminescence, Cyclic Voltametric, Fluorescence sensors, Colorimetric sensors, Chemiluminometric sensors, Surface Enhanced Raman Spectroscopy (SERS) Sensors, and Surface Plasmon Resonometric (SPR) Sensors. The final section discusses the challenges and prospective of biosensors in amphetamine drug detection. The review emphasises the need for continued research and development to improve the sensitivity, selectivity, and stability of biosensors, as well as their compatibility with real-world samples, such as urine, blood, and saliva.

Disclosure statement

The authors have no conflicts of interest.

Additional information

Funding

The review is supported by Department of Biotechnology [DBT] [grant no. BT/PR31594/MED/32/738/2020].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.