68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Visible light active Ti3+ self-doped mesoporous TiO2 photocatalyst with efficient photocatalytic performance for the degradation of chlorpyrifos

, , &
Received 20 Sep 2023, Accepted 07 Nov 2023, Published online: 13 Nov 2023
 

ABSTRACT

In the present research, Ti3+ self-doped TiO2 photocatalyst (Ti3+-TiO2) was fabricated through a facial in-situ NaBH4 reduction approach. The as-prepared Ti3+-TiO2 were characterised using FESEM-EDS, TEM, HRTEM, XRD, UV-DRS, PL, EIS, and BET methods. The photocatalytic performance of the Ti3+-TiO2 was assessed through the degradation of chlorpyrifos (CPY) as an organophosphorus pesticide under visible LED light irradiation. The Ti3+-TiO2 exhibited excellent photocatalytic degradation efficiency at initial CIP concentration = 1 mg L−1, pH = 7, catalyst dosage = 0.2 g L−1, and reaction time of 50 min with 97%, which is 4.62 times higher than that of pristine TiO2. The extraordinarily boosted photocatalytic activity of Ti3+-TiO2 can be attributed to mesoporous nanostructure, oxygen vacancy, and Ti3+ self-doping, which facilitates visible light harvesting and accelerates charge carrier separation and transport. In addition, Ti3+-TiO2 shows outstanding mineralisation capability and recycling performance in degrading CPY. Coexisting water anions (NO3, Cl, SO4 2-, HCO3) and HA inhibited the degradation of CPY. Their inhibition effects of selected anions followed the order of HCO3 > SO4 2-> NO3 > Cl. Besides, a possible reaction mechanism of the photocatalytic process was recommended based on evidence from the radical scavenging test and photoelectrochemical measurements. The energy consumption value in this study was much less than that reported in other studies. Collectively, the findings show that Ti3+-TiO2 photocatalyst has tremendous potential in solar photocatalytic degradation of refractory organic pollutants.

Acknowledgments

The present study was adopted from the project of Mansour Sarafraz at Aja University of Medical Sciences with 1400.213 project number. We are very grateful to Aja University of Medical Sciences for its financial and equipment support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Aja University of Medical Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.