82
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Visible-light photocatalytic degradation of two textile dyes by recyclable ZnO-Perlite: kinetic models and cost analysis

, , &
Received 08 Sep 2023, Accepted 13 Nov 2023, Published online: 30 Nov 2023
 

ABSTRACT

Zinc oxide (ZnO), as an n-type semiconductor photocatalyst, is often selected due to its excellent photocatalytic performance and is supported on commercial expanded perlite (EP) to enhance interfacial charge separation efficiency under visible LED light. The structure and photocatalytic properties of the synthesised photocatalyst via the co-precipitation route were studied through XRD, FT-IR, SEM, EDX and pHpzc analyses. The photocatalytic response was evaluated by studying the degradation of two toxic and refractory azo dyes, reactive black 5 (RB5) and acid red 14 (AR14). Azo dyes (20 mg L−1) were completely degraded in the studied system, which occurred at pH 7 and 3, with catalyst amounts of 2 and 1 g L−1, and in the presence of H2O2 at 2 and 10 mM under LED light (15 W) within 2 h for RB5 and AR14, respectively. The degradation of RB5 and AR14 followed first-order kinetics with Kobs values of 0.0218 and 0.0169 min−1 and R2 values of 0.9271 and 0.8325, respectively. The assessment of energy consumption (EEO) and total operation cost (OC) confirmed that the supported ZnO offered the lowest power and cost requirements to transform selected pollutants into the acquired effluent, with values of 20.65 and 25.13 kWh m−3 and 3.11 and 3.205 USD kg−1 for RB5 and AR14, respectively, compared to using only VIS/ZnO, VIS/EP and VIS. Furthermore, the catalyst exhibited stability without the need for any additional chemicals for up to 10 h (5 reuse cycles). Additionally, the presence of major anions (sulphate, chloride and alkalinity) reduced the degradation efficiency in a real water matrix (1.74 and 1.47 times for RB5 and AR14, respectively) compared to that in distilled water.

Acknowledgments

This research project was supported by Guilan University of Medical Sciences (GUMS) under Ethical code: IR.GUMS.REC.1400.370. The authors sincerely appreciate the Research Center of Health and Environment, GUMS, Rasht, Iran, for providing all the support for this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/03067319.2023.2286307.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.