Publication Cover
Arboricultural Journal
The International Journal of Urban Forestry
Volume 34, 2012 - Issue 4
213
Views
3
CrossRef citations to date
0
Altmetric
Articles

Failure of forks in clonal varieties of Platanus x acerifolia

, &
Pages 179-189 | Published online: 27 Feb 2013
 

Abstract

Established plantings of clonal London Planes (Platanus x acerifolia (Aiton) Willd.) in Bristol city centre have suffered such a high proportion of failures at their forks and branch junctions that many semi-mature trees have been removed on the grounds of safety. This issue of “Problem Planes” has been noted in arboricultural literature (Tubby & Rose, 2008), but the phenomenon has up until now not been subject to rigorous scientific investigation.

Young plane forks harvested from a modern problematic clonal type and from traditional non-problematic clonal stock were compared in relation to the size of their growth increments, wood density, load-bearing capacity and load-bearing capacity of the smaller branch arising from the bifurcation. Based on two-dimensional (2D) images taken of each fork, finite element analysis (FEA) software was used to estimate the relative stress concentration levels of the harvested forks if the two branches arising from the bifurcation were bent apart.

The stems of the modern problematic clones situated just below the junctions tested were found to be growing 79% faster than the traditional non-problematic clones by analysis of transverse growth increments of the test samples collected. However, wood density was not found to be significantly different between these clonal types. Forks of modern problematic clones which were each subjected to an in-plane static tensile test had only 50.5% of the bending strength of their smaller arising branches which were subjected to a three-point bending test, whereas the forks of traditional non-problematic clones were 68.6% as strong as their smaller branches. Finite element analysis predicted that the shapes of the forks formed on the problematic clones would lead to around 16% higher stress concentrations at their fork apices when compared with the shapes of the junctions found on the non-problematic clone samples.

From this evidence, the authors find that at least part of the explanation as to why the junctions of these modern problematic clones of Platanus x acerifolia are failing is that they develop more “V-shaped” junctions that lead to greater stress concentrations on the inside of the fork when the branches arising from the bifurcation sway apart in windy conditions. Selection of planting stock of London Plane by arboriculturists should include an assessment of the shape of their branch junctions and forks, to avoid perpetuation of this problem.

Acknowledgements

The authors would like to acknowledge the efforts of Mr. Russell Horsey and his arboricultural team at Bristol City Council, who brought this issue to our attention at the AA Conference of 2010 and arranged the supply of the test material from the London plane stock. Thanks go to Dr. David Elphinstone, Research Co-ordinator at Myerscough College, Lancashire, for his advice on the project outcomes and to Mike Heys for creating diagrams and illustrations for this paper. Finally, Robert Rainford is acknowledged for his kind help in transporting the tree fork samples from Bristol to Preston.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.