189
Views
15
CrossRef citations to date
0
Altmetric
Articles

A morphological adaptation approach to path planning inspired by slime mould

Pages 279-291 | Received 11 Oct 2014, Accepted 27 Nov 2014, Published online: 26 Jan 2015
 

Abstract

Path planning is a classic problem in computer science and robotics which has recently been implemented in unconventional computing substrates such as chemical reaction–diffusion computers. These novel computing schemes utilise the parallel spatial propagation of information and often use a two-stage method involving diffusive propagation to discover all paths and a second stage to highlight or visualise the path between two particular points in the arena. The true slime mould Physarum polycephalum is known to construct efficient transport networks between nutrients in its environment. These networks are continuously remodelled as the organism adapts its body plan to changing spatial stimuli. It can be guided towards attractant stimuli (nutrients, warm regions) and it avoids locations containing hazardous stimuli (light irradiation, repellents, or regions occupied by predatory threats). Using a particle model of slime mould we demonstrate scoping experiments which explore how path planning may be performed by morphological adaptation. We initially demonstrate simple path planning by a shrinking blob of virtual plasmodium between two attractant sources within a polygonal arena. We examine the case where multiple paths are required and the subsequent selection of a single path from multiple options. Collision-free paths are implemented via repulsion from the borders of the arena. Finally, obstacle avoidance is implemented by repulsion from obstacles as they are uncovered by the shrinking blob. These examples show proof-of-concept results of path planning by morphological adaptation which complement existing research on path planning in novel computing substrates.

Notes

Supplementary video recordings visualising the shrinkage and adaptation of the model plasmodium in path planning examples can be found at: http://uncomp.uwe.ac.uk/jeff/pathplanning.htm.

Additional information

Funding

This paper was supported by the EU research project ‘Physarum Chip: Growing Computers from Slime Mould’ [FP7 ICT Ref 316366].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 949.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.