58
Views
1
CrossRef citations to date
0
Altmetric
Original

An improved design of axially driven permanent maglev centrifugal pump with streamlined impeller

, , &
Pages 170-174 | Published online: 09 Jul 2009
 

Abstract

Background: In 1839, Earnshaw proved theoretically that it is impossible to achieve a stable equilibrium with a pure permanent maglev. Furthermore, in 1939, Braunbeck deduced that it is only possible to stabilize a super conductive or an electric maglev. In 2000, however, the present authors discovered that stable levitation is achievable by a combination of permanent magnetic and nonmagnetic forces, and its stability can be maintained even with mere passive magnetic forces by use of the gyro-effect.

Design concepts: An improved design of permanent maglev impeller pump has been developed. Passive magnetic (PM) bearings support the rotor radially; on its right side, an impeller is fixed and on its left side a motor magnets-assemble is mounted. Unlike a previous prototype design, in which the rotor magnets were driven by a motor via magnetic coupling, a motor coil is installed opposite to the motor magnets disc, producing a rotating magnetic field. At standstill or if the rotating speed is lower than 4000 rpm, the rotor has one axial point contact with the motor coil. The contact point is located at the centre of the rotor. As the rotating speed increases gradually to higher than 4000 rpm, the rotor will be drawn off from the contact point by the hydrodynamic force of the fluid. Then the rotor becomes fully suspended.

Key points of stabilization: For radial and peripheral stabilization, a gyro-effect is important, which is realized by designing the motor magnets disc to have large diameter, short length and high rotating speed; for axial stability, an axial rehabilitating force is necessary, which is produced by PM bearings.

Results: The rotor demonstrated a full levitation by rotation over 4000 rpm. As a left ventricular assist device, the rotation of the pump has a speed range from 5000 to 8000 rpm. The relation between pressure head and flow rate indicates that there is neither mechanical friction nor hydrodynamic turbulence inside the pump; the former is due to the frictionless maglev and the latter is a result of the streamlined design of the impeller.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.