44
Views
3
CrossRef citations to date
0
Altmetric
Original Article

A nonlinear trimmed moving averaging-based system with its application to real-time QRS beat classification

Pages 443-449 | Published online: 09 Jul 2009
 

Abstract

In this paper, a real-time QRS beat classification system based on a nonlinear trimmed moving average filter is presented. This nonlinear system aims to identify abnormal beats of ventricular origin. The proposed beat classifier is designed to work in parallel with a real-time QRS detector, allowing the task of beat diagnosis to be performed immediately after a QRS complex is detected. Algorithm performance was evaluated against the ECG recordings drawn from the MIT-BIH arrhythmia database. Numerical results demonstrated that a beat classification rate of over 99.5% can be achieved by the algorithm.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.