1,247
Views
74
CrossRef citations to date
0
Altmetric
Innovation Paper

Measurement of thermal and ultrasonic properties of some biological tissues

, , , , &
Pages 249-256 | Published online: 09 Jul 2009
 

Abstract

The measurement of thermal and ultrasonic properties of biological tissues is essential for the assessment of the temperature rise induced in vivo by diagnostic ultrasound. In this paper, we present measurements of thermal conductivity, thermal diffusivity, speed of sound and ultrasonic attenuation of fresh ex vivo porcine tissue, namely ‘muscle’ (from abdomen and leg), ‘skin with subcutaneous fat’ (from abdomen and leg), ‘abdominal fat’ and ‘bone’. The measurements of the thermal properties of biological tissue samples are based on a transient method. Thermal property measurements show that subcutaneous fat has the lowest thermal conductivity (0.23 W m−1 K−1), while muscle gives the highest values (0.46 W m−1 K−1). Thermal diffusivity of muscle tissue recorded the highest value among the studied tissues (0.16 mm2 s−1) while that of skin with subcutaneous fat gave the lowest value (0.11 mm2 s−1). A scanning acoustic macroscope was used to measure attenuation coefficient and speed of sound for the tissue samples. The results for the speed of sound are broadly similar to those reported in the literature. The power law dependence of the attenuation coefficient of the form η = a f b as a function of frequency was found to be more appropriate than the linear fit in this study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.