528
Views
23
CrossRef citations to date
0
Altmetric
Innovation

Automated signal quality assessment of mobile phone-recorded heart sound signals

, , , , , , & show all
Pages 342-355 | Received 21 Feb 2016, Accepted 22 Jun 2016, Published online: 23 Sep 2016
 

Abstract

Mobile phones, due to their audio processing capabilities, have the potential to facilitate the diagnosis of heart disease through automated auscultation. However, such a platform is likely to be used by non-experts, and hence, it is essential that such a device is able to automatically differentiate poor quality from diagnostically useful recordings since non-experts are more likely to make poor-quality recordings. This paper investigates the automated signal quality assessment of heart sound recordings performed using both mobile phone-based and commercial medical-grade electronic stethoscopes. The recordings, each 60 s long, were taken from 151 random adult individuals with varying diagnoses referred to a cardiac clinic and were professionally annotated by five experts. A mean voting procedure was used to compute a final quality label for each recording. Nine signal quality indices were defined and calculated for each recording. A logistic regression model for classifying binary quality was then trained and tested. The inter-rater agreement level for the stethoscope and mobile phone recordings was measured using Conger’s kappa for multiclass sets and found to be 0.24 and 0.54, respectively. One-third of all the mobile phone-recorded phonocardiogram (PCG) signals were found to be of sufficient quality for analysis. The classifier was able to distinguish good- and poor-quality mobile phone recordings with 82.2% accuracy, and those made with the electronic stethoscope with an accuracy of 86.5%. We conclude that our classification approach provides a mechanism for substantially improving auscultation recordings by non-experts. This work is the first systematic evaluation of a PCG signal quality classification algorithm (using a separate test dataset) and assessment of the quality of PCG recordings captured by non-experts, using both a medical-grade digital stethoscope and a mobile phone.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Notes

1 A retrospective analysis of the robustness of the classification when varying m and r was performed when using single-feature seSQI classification with regularised logistic regression. It was found that increasing m led to a decrease in classification accuracy for both the iPhone and Littmann devices, while the results varied little (less than 2%) when varying r between 0.0008 and 0.002. Values of r outside of this range led to decreased performance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.