141
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigating the performance of four specific types of material grafts and their effects on hemodynamic patterns as well as on von Mises stresses in a grafted three-layer aortic model using fluid-structure interaction analysis

, , &
Pages 630-643 | Received 03 Jul 2017, Accepted 18 Sep 2017, Published online: 27 Oct 2017
 

Abstract

One of the important parts of the cardiac system is aorta which is the fundamental channel and supply of oxygenated blood in the body. Diseases of the aorta represent critical cardiovascular bleakness and mortality around the world. This study aims at investigation of hemodynamic parameters in a two-dimensional axisymmetric model of three-layer grafted aorta using fluid–structure interaction (FSI). It assumes that a damaged part of aorta, which may happen as a result of some diseases like aneurysm, dissection and post-stenotic dilatation, is replaced with a biomaterial graft. Four types of grafts materials so-called Polyurethane, Silicone rubber, Polytetrafluoroethylene (PTFE) and Dacron are considered in the present study. The assumption of linear elastic and isotropic material is set for the both aorta's wall and aforementioned grafts. Blood is considered as an incompressible and Newtonian fluid. The results indicate higher displacement in Polyurethane and silicone rubber in comparison with other two. Furthermore, results reveal that blood flow velocity has slightly higher values in PTFE and Dacron grafted models compared to Polyurethane and Silicone rubber ones. Even though there are some differences in hemodynamic patterns in these grafted models, they are not considerable as much as von Mises stresses across the graft-aorta intersections are. This study shows that the types of material grafts play an important role in the amount of stresses particularly at intersections of aorta and graft.

Acknowledgements

We acknowledge Professor Hossein Ahmadi Tafti from Tehran Heart Center (THC) and our associates there for direct technical assistance.

Disclosure statement

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.