142
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of magnetic field on haemodynamic perturbations in atherosclerotic coronary arteries

ORCID Icon, &
Pages 148-156 | Received 10 Oct 2017, Accepted 18 Feb 2018, Published online: 26 Mar 2018
 

Abstract

Haemodynamic perturbations including elevated blood viscosity, low and oscillatory shear stress are understood to be important pathogenic mediators in atherosclerosis. These haemodynamic abnormalities are influenced by the presence of a magnetic field. This study conducted computational fluid dynamics (CFD) analysis in 4 coronary artery models, derived from authentic human coronaries, with mild and moderate and severe stenosis severity. The aim was to investigate the effect of a static magnetic field of varying intensities on blood viscosity, areas of low wall shear stress (ALWSS), maximum wall shear stress (MWSS) and length and volume of flow recirculation zones. The results showed that the magnetic field results in both beneficial and detrimental changes in haemodynamics. The beneficial effects are lowered viscosity, decreased size of ALWSS and flow recirculation zones whereas the detrimental effect is increased MWSS. With increasing stenosis severity the effect of magnetic field becomes more prominent. An externally applied magnetic field can improve haemodynamics perturbations in human coronary arteries, especially in the setting of moderate-to-severe stenosis severity.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.