188
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Phonocardiogram classification using deep neural networks and weighted probability comparisons

ORCID Icon, &
Pages 510-517 | Received 26 Jun 2018, Accepted 16 Dec 2018, Published online: 18 Feb 2019
 

Abstract

Cardiac auscultation is one of the most conventional approaches for the initial assessment of heart disease, however the technique is highly user-dependent and with low repeatability. Several computational approaches based on the analysis of the phonocardiograms (PCG) have been proposed to classify heart sounds into normal or abnormal, but most often do not achieve acceptable levels of sensitivity (Se) and specificity (Sp) or require the use of special hardware. We propose a novel approach for classification of PCG. First, the system makes use of deep neural networks for computing individual cardiac cycle probabilities, followed by classification using weighted probability comparisons. The system was tested on an extended dataset consisting of a balanced sample of 18179 normal and abnormal cycles, achieving Se and Sp values of 91.3% and 93.8% respectively. In addition, the system overcomes previous limitations since it was trained with a balanced sample; also, the decision factor used during the classification stage allows to control the trade-off between Se and Sp, making the proposed system suitable for clinical applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 706.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.