Abstract

In 2020, the Australasian palaeontological association Australasian Palaeontologists (AAP) joined the Australian government-supported Australian National Species List (auNSL) initiative to compile the first Australian Fossil National Species List (auFNSL) for the region. The goal is to assemble comprehensive systematic data on all vertebrate, invertebrate and plant fossil taxa described to date, and to present the information both within a continuously updated open-access online framework, and as a series of primary reference articles in AAP’s flagship journal Alcheringa. This paper spearheads these auFNSL Alcheringa publications with an annotated checklist of Australian Mesozoic tetrapods. Complete synonymy, type material, source locality, geological age and bibliographical information are provided for 111 species formally named as of 2022. In addition, chronostratigraphically arranged inventories of all documented Australian Mesozoic tetrapod fossil occurrences are presented with illustrations of significant, exceptionally preserved and/or diagnostic specimens. The most diverse order-level clades include temnospondyl amphibians (34 species), saurischian (13 species) and ornithischian (12 species) dinosaurs (excluding ichnotaxa), and plesiosaurian marine reptiles (11 species). However, numerous other groups collectively span the earliest Triassic (earliest Induan) to Late Cretaceous (late Maastrichtian) and incorporate antecedents of modern Australian lineages, such as chelonioid and chelid turtles and monotreme mammals. Although scarce in comparison to records from other continents, Australia’s Mesozoic tetrapod assemblages are globally important because they constitute higher-palaeolatitude faunas that evince terrestrial and marine ecosystem evolution near the ancient South Pole. The pace of research on these assemblages has also accelerated substantially over the last 20 years, and serves to promote fossil geoheritage as an asset for scientific, cultural and economic development. The auFNSL augments the accessibility and utility of these palaeontological resources and provides a foundation for ongoing exploration into Australia’s unique natural history.

Stephen F. Poropat [[email protected]], Western Australian Organic and Isotope Geochemistry Centre, School of Earth and Planetary Science, Curtin University, Bentley, Western Australia 6102, Australia, and Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, Winton, Queensland 4735, Australia; Phil R. Bell [[email protected]], Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Lachlan J. Hart [[email protected]], Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Kensington, New South Wales 2052, Australia, and Australian Museum Research Institute, 1 William Street, Sydney, New South Wales 2010, Australia; Steven W. Salisbury [[email protected]] School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Benjamin P. Kear [[email protected]] The Museum of Evolution, Uppsala University, Norbyvägen 16, Uppsala SE-752 36, Sweden.

This article is part of the following collections:
Australasian palaeontology 2015-2025

THE AUSTRALIAN NATIONAL SPECIES LIST (auNSL) is a joint taxonomic resource project (https://biodiversity.org.au/nsl/) involving the Australian Biological Resources Study (ABRS) of the Australian Government Department of Climate Change, Energy, the Environment and Water (https://www.dcceew.gov.au/science-research/abrs), in partnership with the CSIRO (https://www.csiro.au) and various Australian museums, herbaria, and universities. The auNSL aims to produce publicly accessible databases for all formally designated taxa represented in the Australian biota and, thereby, provide an authoritative tool for research, education and government policy. Australasian Palaeontologists (AAP) joined the auNSL to integrate the perspective of past biodiversity, which has otherwise been previously catalogued through disparate external portals, such as the New and Old Worlds (NOW) Database of Fossil Mammals (https://nowdatabase.org/). The resulting Australian Fossil National Species List (auFNSL) is, thus, a resource dedicated to documenting the unique fossil record of the region.

The auFNSL (https://www.australasianpalaeontologists.org/databases) currently hosts taxonomic checklists for multiple invertebrate and vertebrate groups, including species of fossil mammals from Australia and New Guinea (Travouillon et al. Citation2021), Australian fossil birds (Worthy et al. Citation2021), and Australian fossil reptiles and amphibians (Thorn et al. Citation2021). Worthy & Nguyen (Citation2020) independently published an annotated list of Australian fossil bird species that established both a catalyst and formatting blueprint for special feature articles now being published in AAP’s flagship journal Alcheringa. Here, we present the inaugural contribution to this series with an annotated checklist of Australian Mesozoic tetrapods; this expands on data from Thorn et al. (Citation2021) and showcases one of the most high-profile areas of palaeontological research in Australasia. Note that although fragmentary Mesozoic tetrapod fossils are known from Timor and New Caledonia, which were connected to Australia during the early Mesozoic (see Kear et al. Citation2018), these will be summarized in a separate auFNSL annotated list. This survey also excludes fossils from the Australian Antarctic Territories. New Zealand otherwise maintains its own national palaeontological collection (https://www.gns.cri.nz/data-and-resources/national-paleontological-collection/) and locality documentation (https://fred.org.nz/) initiatives.

Collectively, the Australian Mesozoic tetrapod fossil record is among the least prolific of any continent (e.g., Molnar Citation1980a, Citation1982, Citation1991, Warren Citation1972, Citation1982, Citation1991, Long Citation1990, Citation1993, Citation1998, Rich & Vickers-Rich Citation2003a, Scanlon Citation2006, Kear & Hamilton-Bruce Citation2011). Yet, knowledge of these fossils likely extends back many thousands of years amongst First Nations peoples. For instance, in the Saltwater Culture of the West Kimberley in northwestern Western Australia, three-toed footprints exposed along the Dampier Peninsula coastline form part of a song cycle or ‘dreaming’ that traces the journey of a creation being known as Marala or ‘Emu Man’ (Salisbury et al. Citation2017). Western science has come to interpret these tracks as traces of non-avian theropod dinosaurs, and named them Megalosauropus broomensis Colbert & Merrilees, Citation1967. Since the late 1980s, numerous other fossilized tracks have been recorded and described from these rocks, and the region now boasts the most diverse dinosaur ichnocoenoses in the world (Salisbury et al. Citation2017).

The earliest written description of an Australian Mesozoic tetrapod fossil was published in 1859 by the eminent British anatomist Thomas Henry Huxley, who reported a skull and mandible of the temnospondyl amphibian Bothriceps australis Huxley, Citation1859 (Huxley Citation1859). The source locality of this specimen (NHMUK PV R23110) was ‘said to be from Australia’, which left its geographical origin in doubt (Warren & Marsicano Citation1998). The mystery was finally resolved by the discovery of new material in the upper Parmeener Group of Tasmania, which stratigraphically spans the uppermost Permian to lowermost Triassic transition (Warren et al. Citation2011).

A similarly quirky history follows the recovery of Australia’s ‘first’ dinosaur fossils, which were allegedly collected in 1844 on Cape York Peninsula by crew of the British navy warship H.M.S. Fly (Vickers-Rich et al. Citation1999). These bones were duly sent back to England and eventually named Agrosaurus macgillivrayi Seeley, Citation1891 by the famous English palaeontologist Harry Govier Seeley (Seeley Citation1891). Galton (Citation1990) and Molnar (Citation1991) later identified the remains as being from a ‘prosauropod’ (non-sauropod sauropodomorph); however, re-exploration of the supposed type locality (thought to be somewhere on Cape Grenville near the tip of the Cape York Peninsula in northernmost Queensland) in 1995 led Vickers-Rich et al. (Citation1999) to demonstrate that these fossils were not derived from Australia at all. Rather, they were from the UK and had likely been mislabelled. Agrosaurus macgillivrayi was thus formally designated a junior synonym of Thecodontosaurus antiquus Morris, Citation1843, a basally divergent sauropodomorph from the Upper Triassic (Rhaetian) of southwestern England.

At most recent count in 2022, there are 100 genera and 111 species (including 10 nomina dubia) of Mesozoic tetrapods formally named from body or trace fossils found in Australia, with almost 35% having been published in the last ∼20 years (). The majority of these taxa are based on material from Triassic (17 occurrences) and Lower and Upper Cretaceous (29 occurrences) lithostratigraphic units, with only a few (four occurrences) reported from Jurassic rocks (Appendix ).

Table 1. Classification summary of uppermost Permian and Mesozoic tetrapods from the Australian Fossil National Species List.

Temnospondyl amphibians are by far the most diverse order-level clade, with 31 species and 27 genera named from 12 uppermost Permian to Lower Triassic and Middle Triassic formations (see Kear & Hamilton-Bruce Citation2011). An additional three named monospecific genera are recognized from Lower Jurassic (upper Toarcian: Todd et al. Citation2019, Sobczak et al. Citation2022) and Lower Cretaceous (uppermost Barremian to lowermost Aptian: Wagstaff et al. Citation2020) deposits, encompassing the last-surviving member of the clade Koolasuchus cleelandi Warren, Rich & Vickers-Rich, Citation1997 (Warren & Hutchinson Citation1983, Warren et al. Citation1991, Warren et al. Citation1997).

Australian Triassic amniotes include fragmentary dicynodont and cynodont synapsid remains (Thulborn Citation1990, Rozefelds et al. Citation2011), together with a procolophonid, basal neodiapsid, and various archosauromorphs representing five monospecific genera based on body fossils from two formations of Induan to Olenekian age (Ezcurra Citation2014, Hamley et al. Citation2021). Jurassic reptiles incorporate the theropod Ozraptor subotaii Long & Molnar, Citation1998 and an indeterminate sauropod dinosaur (Long Citation1992b, Long & Molnar Citation1998), along with plesiosauroid and ‘rhomaleosaurid-like’ plesiosaurians from two lower Bajocian formations in Western Australia (see Mory et al. Citation2005, Kear Citation2012). The famous gravisaurian sauropod Rhoetosaurus brownei Longman, Citation1926 (Nair & Salisbury Citation2012) was also named from the Oxfordian of Queensland (Todd et al. Citation2019). In addition, indeterminate plesiosaurians (including the geologically oldest identifiable freshwater pliosaurs: Kear Citation2012), and a cryptic diversity of thyreophorans, ornithopods, and small-to-large non-avian theropod dinosaurs have been identified from footprint traces in three formations ranging from the Hettangian to lower Tithonian in Queensland (Romilio Citation2021a, Citation2021b, Romilio et al. Citation2021a, Romilio et al. Citation2021c).

Australian Cretaceous sedimentary rock units are geographically much more extensive than their Triassic or Jurassic counterparts, and have yielded a far greater number of described taxa. Saurischian (12 non-avian monospecific genera) and ornithischian (12 monospecific genera) dinosaurs and plesiosaurian marine reptiles (six unique genera and 11 species) are especially prolific in mid-Valanginian to upper Aptian (Kear Citation2003, Kear et al. Citation2018, Salisbury et al. Citation2017, Wagstaff et al. Citation2020) and upper Albian to mid-Cenomanian (Kear Citation2003, Kear et al. Citation2018, Bell et al. Citation2019b) successions.

Finally, the late Albian enantionithine bird Nanantius eos Molnar, Citation1986, along with 10 mammalian monospecific genera variously identified as ausktribosphenids, bishopids, monotremes and multituberculates have been excavated from uppermost Barremian to lower Albian (Rich & Vickers-Rich Citation2004, Poropat et al. Citation2018, Rich et al. Citation2022a, Citation2022b, Flannery et al. Citation2022a, Flannery et al. Citation2022b), and lower–mid-Cenomanian successions (Bell et al. Citation2019b, Rich et al. Citation2020a).

Exploration for new Mesozoic tetrapod fossil-bearing strata is ongoing, and while historically driven by Australian state museums and universities in collaboration with various international partners, there is now increasing synergy with government accredited regional museums that have led to a wave of new discoveries and raised the profile of regional centres for fossil geotourism and geoconservation (Meakin Citation2011, Sookias et al. Citation2013, Cayla Citation2020). The resulting upsurge in interest, investment and infrastructure is today revolutionizing Australian vertebrate palaeontology, and will no doubt sustain scientific and community benefits for many decades to come.

Institutional abbreviations

AM, Australian Museum, Sydney, Australia. AAOD, Australian Age of Dinosaurs Museum of Natural History, Winton, Australia. BMR, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia. KK, Kronosaurus Korner (Richmond Marine Fossil Museum), Richmond, Australia. LR, Australian Opal Centre, Lightning Ridge, Australia. MCZ, Museum of Comparative Zoology, Cambridge, USA. NHMUK, The Natural History Museum, London, UK. NMV, Melbourne Museum, Museums Victoria, Melbourne, Australia. NRM, Swedish Museum of Natural History (Naturhistoriska riksmuseet), Stockholm, Sweden. NSWGS, New South Wales Geological Survey, Sydney, Australia. QM, Queensland Museum, Brisbane, Australia. SAMA, South Australian Museum, Adelaide, Australia. TMAG, Tasmanian Museum and Art Gallery, Hobart, Australia. UCMP, University of California Museum of Paleontology, Berkeley, USA. UQ, University of Queensland, Brisbane, Australia. UTGD, University of Tasmania, Department of Geology, Hobart, Australia. UWA, University of Western Australia, Perth, Australia. WAM, Western Australian Museum, Perth, Australia.

Systematic palaeontology

TETRAPODA Hatschek & Cori, Citation1896

TEMNOSPONDYLI Zittel, 1888 in Zittel, 1887–Citation1890

Temnospondyli incertae sedis

1885, Lepidostrobus muelleri Johnston, p. 225.

2011, cf. Rhinesuchidae or Rhytidosteidae Rozefelds & Warren, p. 459.

Remarks

We designate Lepidostrobus muelleri a nomen dubium following Rozefelds & Warren (Citation2011).

STEREOSPONDYLI Zittel, 1887–Citation1890

Capulomala Warren, Damiani & Sengupta, Citation2009

Type species

Capulomala arcadiaensis Warren, Damiani & Sengupta, Citation2009.

Capulomala arcadiaensis Warren, Damiani & Sengupta, Citation2009

2009, Capulomala arcadiaensis Warren et al., p. 166.

Holotype

QM F39706, incomplete right mandibular ramus.

Type locality, unit and age

‘Tank locality’ (QM L1111) on the northeastern scarp of the Carnarvon Range, at the southern end of Arcadia Valley in the Central Highlands region of Queensland, Australia. Warren et al. (Citation2009) considered the host deposit to be part of the Arcadia Formation in the Rewan Group (Bowen Basin), which Metcalfe et al. (Citation2015) correlated with the upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones. These span the lower to middle Olenekian (Lower Triassic) based on the recalibrated palynostratigraphy of Mays et al. (Citation2020).

Remarks

Capulomala was erected to accommodate both Capulomala arcadiaensis and a second species, ‘Labyrinthodonpanchetensis Tripathi, Citation1969, from the Panchet Formation of India (Warren et al. Citation2009). Two partial left mandibular rami (QM F12269, QM F12270) previously referred to Plagiobatrachus australis Warren, Citation1985a from ‘The Crater’ locality (QM L78) near Rolleston in central Queensland, together with multiple specimens from Duckworth Creek (QM L1215) near Bluff in east-central Queensland, have now also been assigned to this taxon (Warren et al. Citation2009).

LYDEKKERINIDAE Watson, Citation1919

Lydekkerina Broom, Citation1915

Type species

Lydekkerina huxleyi (see Lydekker Citation1889a, Broom Citation1915).

Lydekkerina huxleyi (Lydekker, Citation1889a) Broom, Citation1915

1889a, Bothriceps huxleyi Lydekker, p. 476.

1915, Lydekkerina huxleyi Broom, p. 366.

2006, Lydekkerina huxleyi Warren et al., p. 878.

Holotype

NHMUK PV R507, an associated skull with articulated left and partial right mandibular ramus, together with cervical and anterior dorsal vertebrae.

Type locality, unit and age

Unspecified site within the Karoo Basin of the Free State Province in South Africa. Botha & Smith (Citation2020) listed Lydekkerina huxleyi as a diagnostic taxon for the Lystrosaurus Assemblage Zone in the Beaufort Group (Karoo Basin), which spans the Induan to lower Olenekian (Lower Triassic).

Remarks

Warren et al. (Citation2006) attributed a skull with both mandibular rami (QM F39705) to Lydekkerina huxleyi from upper Induan to lower Olenekian strata (see Mays et al. Citation2020) of the Rewan Formation (Galilee Basin) on Alpha Station (QM L1434) near Alpha, in southeastern Queensland. Lydekkerina huxleyi is otherwise geographically restricted to Lower Triassic deposits in South Africa (Pawley & Warren Citation2005, Jeannot et al. Citation2006).

Chomatobatrachus Cosgriff, Citation1974

Type species

Chomatobatrachus halei Cosgriff, Citation1974.

Chomatobatrachus halei Cosgriff, Citation1974

1974, Chomatobatrachus halei Cosgriff, p. 44.

Holotype

UTGD 80738, an isolated intact skull.

Type locality, unit and age

Meadowbank Dam northwest of Hobart in Tasmania, Australia. Ezcurra (Citation2014) correlated Chomatobatrachus halei with coeval vertebrate assemblages from the Knocklofty Formation (Tasmanian Basin), which is predominantly Induan to lower Olenekian (Lower Triassic) but has a maximum depositional age of 253 ± 4 mega-annum (Ma).

Remarks

Chomatobatrachus halei is represented by multiple specimens from several localities in southeast Tasmania (Cosgriff Citation1974). The taxon is consistently placed with Lydekkerina huxleyi (Lydekker, Citation1889a) in Lydekkerinidae (Warren et al. Citation2006, Schoch Citation2013, Gee Citation2022, Gee et al. Citation2022).

Lapillopsis Warren & Hutchinson, Citation1990b

Type species

Lapillopsis nana Warren & Hutchinson, Citation1990b.

Lapillopsis nana Warren & Hutchinson, Citation1990b

1990a, Dissorophoidea: Micropholidae Warren & Hutchinson, p. 105.

1990b, Lapillopsis nana Warren & Hutchinson, p. 149.

1999, Lapillopsis nana Yates, p. 303.

Holotype

QM F12284, an associated skull (), mandible, interclavicle, right scapulocoracoid, right humerus, and femur.

Fig. 1. Australian uppermost Permian and Mesozoic temnospondyls. A, Watsonisuchus gunganj (QM F10114; holotype) skull in dorsal view. Scale = 5 cm. B, Chigutisauridae nov. (AM F125866) skull and partial skeleton. Scale = 10 cm. C, Trucheosaurus major (AM F50977; holotype) partial postcranial skeleton. Scale = 5 cm. D, Bulgosuchus gargantua (AM F80190; holotype) left mandible in lateral view. Scale = 10 cm. E, Subcyclotosaurus brookvalensis (AM F47499) skull in dorsal view. Scale = 5 cm. F, Lapillopsis nana (QM F12284; holotype) skull in dorsal view. Scale = 1 cm. G, Rewana quadricuneata (QM F6471; holotype) partial skull in dorsal view. Scale = 5 cm. H, Tirraturhinus smisseni (QM F44093; holotype) rostral portion of skull in dorsal view. Scale = 5 cm. I, Warrenisuchus aliciae (QM F12281; holotype) partial skull in dorsal view. Scale = 1 cm. J, Keratobrachyops australis (QM F10115; holotype) skull in dorsal view. K, Xenobrachyops allos (QM F6572; holotype) skull in dorsal view. Scale = 5 cm. L, Bothriceps australis (AM F4316; cast of holotype [NHMUK PV R23110]) skull in dorsal view. Scale = 5 cm.

Fig. 1. Australian uppermost Permian and Mesozoic temnospondyls. A, Watsonisuchus gunganj (QM F10114; holotype) skull in dorsal view. Scale = 5 cm. B, Chigutisauridae nov. (AM F125866) skull and partial skeleton. Scale = 10 cm. C, Trucheosaurus major (AM F50977; holotype) partial postcranial skeleton. Scale = 5 cm. D, Bulgosuchus gargantua (AM F80190; holotype) left mandible in lateral view. Scale = 10 cm. E, Subcyclotosaurus brookvalensis (AM F47499) skull in dorsal view. Scale = 5 cm. F, Lapillopsis nana (QM F12284; holotype) skull in dorsal view. Scale = 1 cm. G, Rewana quadricuneata (QM F6471; holotype) partial skull in dorsal view. Scale = 5 cm. H, Tirraturhinus smisseni (QM F44093; holotype) rostral portion of skull in dorsal view. Scale = 5 cm. I, Warrenisuchus aliciae (QM F12281; holotype) partial skull in dorsal view. Scale = 1 cm. J, Keratobrachyops australis (QM F10115; holotype) skull in dorsal view. K, Xenobrachyops allos (QM F6572; holotype) skull in dorsal view. Scale = 5 cm. L, Bothriceps australis (AM F4316; cast of holotype [NHMUK PV R23110]) skull in dorsal view. Scale = 5 cm.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Originally identified as a dissorophoid and classified within Micropholidae (Warren & Hutchinson Citation1990a, Citation1990b), Lapillopsis nana has since been referred to Lapillopsidae (Yates Citation1999) or Lydekkerinidae (Eltink et al. Citation2019, Gee Citation2022).

Rotaurisaurus Yates, Citation1999

Type species

Rotaurisaurus contundo Yates, Citation1999.

Rotaurisaurus contundo Yates, Citation1999

1974, Chomatobatrachus halei Cosgriff, p. 44 [partim]

1999, Lapillopsis nana Yates, p. 311.

Holotype

UTGD 87795, an isolated crushed skull with associated left mandibular ramus.

Type locality, unit and age

‘Lower Red Bed’ layer within the Crisp and Gunn’s Brick Pit, western end of Arthur Street in suburban Hobart, Tasmania, Australia; Knocklofty Formation (Tasmania Basin) correlated with Induan to lower Olenekian (Lower Triassic) vertebrate assemblages by Ezcurra (Citation2014).

Remarks

UTGD 87795 was initially referred to Chomatobatrachus halei by Cosgriff (Citation1974), but subsequently established as Rotaurisaurus contundo by Yates (Citation1999). Rotaurisaurus contundo is placed within Lydekkerinidae following the phylogeny-based classifications of Eltink et al. (Citation2019) and Gee (Citation2022).

CAPITOSAURIA Schoch & Milner, Citation2000

Bulgosuchus Damiani, Citation1999

Type species

Bulgosuchus gargantua Damiani, Citation1999.

Bulgosuchus gargantua Damiani, Citation1999

1999, Bulgosuchus gargantua Damiani, p. 91.

Holotype

AM F80190, the posterior glenoid section of a left mandibular ramus ().

Type locality, unit and age

Coastal rock platform at Long Reef in the northern beaches suburbs of Sydney, New South Wales, Australia. The vertebrate fossil-bearing layer at Long Reef occurs within the Bulgo Sandstone (Damiani Citation1999, Kear Citation2009, Niedźwiedzki et al. Citation2016) of the Clifton Subgroup in the Narrabeen Group (Sydney Basin). Mays et al. (Citation2020) directly correlated this level with the mid-Olenekian (Lower Triassic) upper Protohaploxypinus samoilovichii Zone. Metcalfe et al. (Citation2015) also delimited the unit as being older than 248.23 ± 0.13 Ma based on U-Pb zircon dating from the up-sequence Garie Formation.

Remarks

At the time of discovery, Bulgosuchus gargantua was distinguished as the largest-bodied Early Triassic temnospondyl known worldwide (Damiani Citation1999, Citation2001).

Watsonisuchus Ochev, Citation1966

Type species

Watsonisuchus magnus (Watson, Citation1962) Ochev, Citation1966.

Watsonisuchus sp. indet.

1972, Parotosaurus wadei Cosgriff, p. 546.

1980, Parotosuchus wadei (Cosgriff) Warren, p. 25.

1997, Parotosuchus wadei (Cosgriff) Damiani & Warren, p. 282.

2001, Watsonisuchus sp. indet. Damiani, p. 429.

Holotype

AM F55341, an external impression of the skull roof.

Type locality, unit and age

The Railway Ballast Quarry near Gosford in northeastern New South Wales, Australia. These deposits are correlated with the Terrigal Formation of the Narrabeen Group (Sydney Basin). Helby (Citation1973) and Morante (Citation1996) placed this unit within the mid-Olenekian to lower Anisian (Lower to Middle Triassic) Aratrisporites tenuispinosus Palynomorph Zone. Mays & McLoughlin (Citation2022) also listed a specific age estimate of ∼248 Ma.

Remarks

AM F55341 was excavated in 1886 (Stephens Citation1888) and variously attributed to Parotosaurus Jaekel, Citation1922 (Cosgriff Citation1972), Parotosuchus (Warren Citation1980), or treated as a nomen dubium (Damiani & Warren Citation1997), before being transferred to an indeterminate species of Watsonisuchus by Damiani (Citation2001).

Watsonisuchus rewanensis (Warren, Citation1980) Damiani, Citation2001

1980, Parotosuchus rewanensis Warren, p. 26.

2000, Rewanobatrachus gunganj (Warren) Schoch & Milner, p. 135.

2001, Watsonisuchus rewanensis (Warren) Damiani, p. 429.

Holotype

QM F6571, an isolated intact skull.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Watsonisuchus rewanensis was initially assigned to Parotosuchus (Warren Citation1980) but has also been treated as a junior synonym of Rewanobatrachus gunganj (Schoch & Milner Citation2000). Maganuco et al. (Citation2009) demonstrated close affinity with Watsonisuchus magnus, thus confirming the generic placement of Damiani (Citation2001).

Watsonisuchus gunganj (Warren, Citation1980) Damiani, Citation2001

1980, Parotosuchus gunganj Warren, p. 29.

2000, Rewanobatrachus gunganj (Warren) Schoch & Milner, p. 135.

2001, Watsonisuchus gunganj (Warren) Damiani, p. 427.

Holotype

QM F10114, an isolated fragmented skull with incomplete mandible ().

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

See remarks for Watsonisuchus wadei and Watsonisuchus rewanensis. We follow the generic assignments of Damiani (Citation2001) and Maganuco et al. (Citation2009).

Warrenisuchus Maganuco, Steyer, Pasini, Boulay, Lorrain, Bénéteau & Auditore, Citation2009

Type species

Warrenisuchus aliciae (Warren & Hutchinson, Citation1988) as revised by Maganuco et al. (Citation2009).

Warrenisuchus aliciae (Warren & Hutchinson, Citation1988)

1988, Parotosuchus aliciae Warren & Hutchinson, p. 860.

2000, Rewanobatrachus aliciae (Warren & Hutchinson) Schoch & Milner, p. 135.

2001, Watsonisuchus aliciae (Warren & Hutchinson) Damiani, p. 425.

2009, Warrenisuchus aliciae (Warren & Hutchinson) Maganuco et al., p. 37.

Holotype

QM F12281, an associated intact skull () and mandible with vertebrae, ribs, the right ilium, and right hind limb.

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Warrenisuchus aliciae has been variously assigned to Parotosuchus Ochev & Shishkin in Kalandadze, Citation1968 (Warren & Hutchinson Citation1988), Rewanobatrachus Schoch & Milner, Citation2000 (Schoch & Milner Citation2000), and Watsonisuchus (Damiani Citation2001). However, Maganuco et al. (Citation2009) demonstrated sufficient differentiation from these taxa to establish the monotypic genus, Warrenisuchus. Although occurring commonly in the Arcadia Formation (Warren & Hutchinson Citation1988, Warren & Schroeder Citation1995), other potentially attributable remains (= Parotosuchus sp. indeterminate: Warren Citation1980) have been identified from the Lower Triassic Blina Shale in the Canning Basin, Western Australia (Damiani Citation2000).

MASTODONSAURIDAE Lydekker, Citation1885 (sensu Moser & Schoch Citation2007)

Paracyclotosaurus Watson, Citation1958

Type species

Paracyclotosaurus davidi Watson, Citation1958.

Paracyclotosaurus davidi Watson, Citation1958

1958, Paracyclotosaurus davidi Watson, p. 237.

Holotype

NHMUK PV R6000, natural impressions of an articulated skull ( AM F151922 cast), mandible and a virtually complete postcranial skeleton with associated skin and scale traces preserved in counterpart ironstone concretions that have been prepared out and cast (Watson Citation1958).

Fig. 2. Australian Mesozoic temnospondyls. A, Siderops kehli (QM F7882; holotype) skull and partial skeleton. Scale = 20 cm. B, Austropelor wadleyi (QM F2628; holotype) 3D digital rendering of partial dentary in dorsal (occlusal) view. Scale = 5 cm. C, Microposaurus averyi (AM F135895; holotype) rostral portion of skull in right lateral view. Scale = 5 cm. D, Paracyclotosaurus davidi (3D digital rendering of AM F151922; reconstruction based on NHMUK PV R6000) skull in dorsal view. Scale = 10 cm. Koolasuchus cleelandi (NMV P186213; holotype [part]) right mandible in E, dorsal (occlusal) and F, lateral views. Scale = 5 cm. G, Koolasuchus cleelandi (NMV P186213; holotype) left and right mandibles in dorsal (occlusal) view. Dashed line represents reconstructed contour of lower jaw. Scale = 10 cm.

Fig. 2. Australian Mesozoic temnospondyls. A, Siderops kehli (QM F7882; holotype) skull and partial skeleton. Scale = 20 cm. B, Austropelor wadleyi (QM F2628; holotype) 3D digital rendering of partial dentary in dorsal (occlusal) view. Scale = 5 cm. C, Microposaurus averyi (AM F135895; holotype) rostral portion of skull in right lateral view. Scale = 5 cm. D, Paracyclotosaurus davidi (3D digital rendering of AM F151922; reconstruction based on NHMUK PV R6000) skull in dorsal view. Scale = 10 cm. Koolasuchus cleelandi (NMV P186213; holotype [part]) right mandible in E, dorsal (occlusal) and F, lateral views. Scale = 5 cm. G, Koolasuchus cleelandi (NMV P186213; holotype) left and right mandibles in dorsal (occlusal) view. Dashed line represents reconstructed contour of lower jaw. Scale = 10 cm.

Type locality, unit and age

St Peters Brick Pit at St Peters in metropolitan Sydney, New South Wales, Australia. This locality exposes deposits of the Rouse Hill Siltstone Member of the Ashfield Shale, which is the basalmost unit within the Wianamatta Group (Sydney Basin). Herbert (Citation1983, Citation1997) indicated a probable mid-Anisian (Middle Triassic) age for this unit. Helby (Citation1973) provided a specific correlation with the Aratrisporites parvispinosus Palynomorph Zone (see also Helby et al. Citation1987, Metcalfe et al. Citation2015).

Remarks

NHMUK PV R6000 was discovered before 1910 (possibly as early as 1892) and sold to the British Museum (Natural History) in 1927 (Rix Citation2023), where it was reconstructed for exhibition over several decades (Watson Citation1958). Early reports described the find as a temnospondyl similar to Cyclotosaurus Fraas, Citation1889 (e.g., Watson Citation1918, Citation1919, Howchin 1925–Citation1930, David Citation1932, Longman Citation1941, Romer Citation1947, Hills Citation1958). The genus and species, Paracyclotosaurus davidi, was eventually established 48 years later by Watson (Citation1958). Since then, other species of Paracyclotosaurus have been named, including Paracyclotosaurus crookshanki Damiani, Citation2001 from the ?Anisian Denwa Formation of India (Mukherjee & Sengupta Citation1998, Damiani Citation2001), and Paracyclotosaurus morganorum Damiani & Hancox, Citation2003 from upper Anisian strata of the Cynognathus Assemblage Zone in the Beaufort Group (Karoo Basin) of South Africa (Hancox et al. Citation2000, Damiani & Hancox Citation2003).

Subcyclotosaurus Watson, Citation1958

Type species

Subcyclotosaurus brookvalensis Watson, Citation1958.

Subcyclotosaurus brookvalensis Watson, Citation1958

1958, Subcyclotosaurus brookvalensis Watson, p. 258.

Citation1965, Parotosaurus brookvalensis Welles & Cosgriff, p. 80.

1968, Parotosuchus brookvalensis Ochev & Shishkin in Kalandadze, p. 77.

2000, Stanocephalosaurus sp. Schoch & Milner, p. 147.

2001, Mastodonsauridae incertae sedis Damiani, p. 436.

Holotype

AM F47499, an isolated impression of the external skull roof and left mandibular ramus ().

Type locality, unit and age

The Beacon Hill Quarry at Brookvale in suburban Sydney, New South Wales, Australia. Herbert (Citation1997) recognized that the Beacon Hill Quarry exposed part of the extensive Hawkesbury Sandstone of the Sydney Basin. Helby (Citation1973), Herbert (Citation1983) and Helby et al. (Citation1987) included this unit within the probable lower Anisian (Middle Triassic) section of the Aratrisporites parvispinosus Palynomorph Zone (see also Metcalfe et al. Citation2015).

Remarks

Subcyclotosaurus brookvalensis was classified as Mastodonsauridae incertae sedis by Damiani (Citation2001), but is retained here pending re-evaluation.

TREMATOSAURIA Yates & Warren, Citation2000

TREMATOSAUROIDEA Watson, Citation1919

TREMATOSAURIDAE Watson, Citation1919

Tirraturhinus Nield, Damiani & Warren, Citation2006

Type species

Tirraturhinus smisseni Nield, Damiani & Warren, Citation2006.

Tirraturhinus smisseni Nield, Damiani & Warren, Citation2006

2006, Tirraturhinus smisseni Nield et al., p. 264.

Holotype

QM F44093, an isolated prenarial section of the skull showing the skull roof and palate ().

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Although classified within Trematosauridae (Schoch Citation2019), the fragmentary condition of QM F44093 prevents an unambiguous placement within the clade (Novikov Citation2012).

LONCHORHYNCHINAE Säve-Söderbergh, Citation1935

Erythrobatrachus Cosgriff & Garbutt, Citation1972

Type species

Erythrobatrachus noonkanbahensis Cosgriff & Garbutt, Citation1972.

Erythrobatrachus noonkanbahensis Cosgriff & Garbutt, Citation1972

1972, Erythrobatrachus noonkanbahensis Cosgriff & Garbutt, p. 7.

Holotype

WAM 62.1.46, an internal impression of the nasofrontal region of the skull and opposing palate.

Type locality, unit and age

UCMP locality V6044 on Blina Station in the Erskine Ranges of the West Kimberley District, Western Australia. McKenzie (Citation1961) summarized the vertebrate fossil localities from the Blina Shale (Canning Basin), indicating a Lower Triassic succession. Haig et al. (Citation2015) specified an upper Induan–Olenekian range corresponding with the upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (see also Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Cosgriff (Citation1965) suggested that Erythrobatrachus noonkanbahensis might be congeneric with Tertrema Wiman, Citation1914 (see Slodownik et al. Citation2021). Erythrobatrachus noonkanbahensis has otherwise been classified as a distinct taxon within Lonchorhynchinae (Hammer Citation1987, Welles Citation1993, Fortuny et al. Citation2018).

TREMATOSAURINAE Watson, Citation1919

Microposaurus Haughton, Citation1925

Type species

Microposaurus casei Haughton, Citation1925.

Microposaurus averyi Warren, Citation2012

2012, Microposaurus averyi Warren, p. 538.

Holotype

AM F135895, an isolated anterior section of the skull with articulated mandible ().

Type locality, unit and age

Unspecified locality ∼7 km southeast of Picton, southwest of Sydney in New South Wales, Australia; Rouse Hill Siltstone Member of the Ashfield Shale in the Wianamatta Group (Sydney Basin), mid-Anisian (Middle Triassic) Aratrisporites parvispinosus Palynomorph Zone (Herbert Citation1983, Citation1997, Helby et al. Citation1987, Metcalfe et al. Citation2015).

Remarks

Microposaurus has been recorded elsewhere from the Cynognathus Assemblage Zone (upper Olenekian: Hancox et al. Citation2020) of the Beaufort Group in South Africa (Haughton Citation1925, Damiani Citation2004).

RHYTIDOSTEIDAE von Huene, Citation1920

Trucheosaurus Watson, Citation1956

Type species

Trucheosaurus major (Smith Woodward, Citation1909) as revised by Watson (Citation1956).

Trucheosaurus major (Smith Woodward, Citation1909)

1909, Bothriceps major Smith Woodward, p. 319.

1911, Bothriceps woodwardi Moodie, p. 375.

1956, Trucheosaurus major (Smith Woodward) Watson, p. 327.

Holotype

The holotype material has been accessioned into three separate collection repositories: NSWGS F12967, part component showing the intact skull roof; AM F50977, part component of the incomplete vertebral column and right forelimb with some right hind limb elements (); NHMUK PV R3728, counterpart component of the skull roof, incomplete vertebral column and limb elements.

Type locality, unit and age

Commonwealth Oil Corporation oil shale mine at Airly in central-eastern New South Wales, Australia. Marsicano & Warren (Citation1998) listed the source unit as the Glen Davis Formation within the Charbon Subgroup in the Illawarra Coal Measures (Sydney Basin). McMinn (Citation1985) correlated the Glen Davis Formation with the upper Tomago Coal Measures in the northern Sydney Basin, which are mid-Lopingian (upper Permian) based on Percival et al. (Citation2012).

Remarks

Although of Palaeozoic age, we include Trucheosaurus major as a rare late Permian tetrapod taxon named from the otherwise predominantly Early–Middle Triassic tetrapod assemblage succession of the Sydney Basin. Trucheosaurus major was originally described as a brachyopid (Watson Citation1956), but has more recently been interpreted as the geologically oldest member of Rhytidosteidae (Warren Citation1997, Marsicano & Warren Citation1998).

Deltasaurus Cosgriff, Citation1965

Type species

Deltasaurus kimberleyensis Cosgriff, Citation1965.

Deltasaurus kimberleyensis Cosgriff, Citation1965

1965, Deltasaurus kimberleyensis Cosgriff, p. 68.

Holotype

WAM 62.1.44, an isolated incomplete skull preserving the left lateral skull roof and corresponding palate.

Type locality, unit and age

UCMP locality V6040 on Blina Station in the Erskine Ranges of the West Kimberley District, Western Australia; Blina Shale (Canning Basin), upper Induan to lower Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Haig et al. Citation2015).

Remarks

Deltasaurus kimberleyensis is one of the most common vertebrate fossil taxa encountered in the Blina Shale (Cosgriff Citation1965). The species has also been identified from the Cluan and Knocklofty formations of Tasmania (Cosgriff Citation1974). Schoch & Milner (Citation2000) proposed a subfamilial placement within Peltosteginae.

Deltasaurus pustulatus Cosgriff, Citation1965

1965, Deltasaurus pustulatus Cosgriff, p. 80.

Holotype

BMR F21775, a skull roof fragment preserving the right orbital region and corresponding palate.

Type locality, unit and age

Beagle Ridge Bore (BMR 10) north of Geraldton in southwestern Western Australia. Cosgriff (Citation1965) listed the source unit as the Kockatea Shale (Perth Basin), which Thomas et al. (Citation2004) recognized as spanning the Permian/Triassic boundary. Haig et al. (Citation2015) alternatively correlated strata along the onshore basin margins with the lower Olenekian (Lower Triassic) Krauselisporites saeptatus and Protohaploxypinus samoilovichii palynomorph zones.

Remarks

Dickins et al. (Citation1961) reported that BMR F21775 was encountered at a bore depth of ∼1 km. Haig et al. (Citation2015) have since also described possible temnospondyl remains from surface exposures of the Kockatea Shale.

Rewana Howie, Citation1972b

Type species

Rewana quadricuneata Howie, Citation1972b.

Rewana quadricuneata Howie, Citation1972b

1972, Rewana quadricuneata Howie, p. 52.

Holotype

QM F6471, an incomplete palate with components of the skull roof () and an associated largely intact postcranial skeleton.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Rewana quadricuneata has been taxonomically problematic (Howie Citation1972b), with various referrals to Indobrachyopidae (Cosgriff & Zawiskie Citation1979), Derwentiidae (Schoch & Milner Citation2000) or Rhytidosteidae (Warren & Black Citation1985). We follow the phylogeny-based classification of Dias-Da-Silva & Marsicano (Citation2011), who placed R. quadricuneata in Rhytidosteidae.

Derwentia Cosgriff, Citation1974

Type species

Derwentia warreni Cosgriff, Citation1974

Derwentia warreni Cosgriff, Citation1974

1974, Derwentia warreni Cosgriff, p. 75.

Holotype

UTGD 87784, an isolated intact skull.

Type locality, unit and age

‘Old Beach’ locality on the eastern shore of the Derwent River north of Hobart in Tasmania, Australia; Knocklofty Formation (Tasmanian Basin) correlated with Induan to lower Olenekian (Lower Triassic) vertebrate assemblages by Ezcurra (Citation2014).

Remarks

Derwentia warreni has been variously assigned to Rhytidosteidae (Cosgriff Citation1974), Indobrachyopidae (Cosgriff & Zawiskie Citation1979), and Derwentiidae (Schoch & Milner Citation2000). We follow the phylogeny-based classification of Dias-Da-Silva & Marsicano (Citation2011) with assignment of D. warreni to Rhytidosteidae.

Arcadia Warren & Black, Citation1985

Type species

Arcadia myriadens Warren & Black, Citation1985.

Arcadia myriadens Warren & Black, Citation1985

1985, Arcadia myriadens Warren & Black, p. 314.

2000, Rewana myriadens (Warren & Black) Schoch & Milner, p. 85.

Holotype

QM F10121, a fragmented skull roof with palatal components, incomplete mandibular rami and associated vertebrae, rib fragments and hind limb elements.

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Arcadia myriadens has been classified as either a rhytidosteid (Warren & Black Citation1985) or derwentiid (Schoch & Milner Citation2000). Schoch & Milner (Citation2000) also used the alternative generic designation Rewana myriadens. We follow the phylogeny-based classification of Dias-Da-Silva & Marsicano (Citation2011) with assignment of A. myriadens to Rhytidosteidae.

Acerastea Warren & Hutchinson, Citation1987

Type species

Acerastea wadeae Warren & Hutchinson, Citation1987.

Acerastea wadeae Warren & Hutchinson, Citation1987

1987, Acerastea wadeae Warren & Hutchinson, p. 292.

Holotype

QM F12277, a fragmentary skull with mandibular rami, vertebrae, ribs pectoral girdle, forelimb and pelvic girdle elements, together with associated gastroliths.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Schoch & Milner (Citation2000) placed Acerastea wadeae within Derwentiidae, although we follow Dias-Da-Silva & Marsicano (Citation2011) in their phylogeny-based referral to Rhytidosteidae. Warren & Hutchinson (Citation1987) also remarked on the unusual presence of associated gastroliths.

Nanolania Yates, Citation2000

Type species

Nanolania anatopretia Yates, Citation2000.

Nanolania anatopretia Yates, Citation2000

1990a, Arcadia myriadens (Warren & Black) Warren & Hutchinson, p. 104.

2000, Nanolania anatopretia Yates, p. 485.

Holotype

QM F12293, the postorbital region of a skull and parts of both mandibular rami.

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Warren & Hutchinson (Citation1990a) initially identified QM F12293 as an osteologically immature specimen of Arcadia myriadens. Yates (Citation2000) subsequently established Nanolania anatopretia as a distinct species within Rhytidosteidae.

PLAGIOSAURIDAE Jaekel, Citation1914

Plagiobatrachus Warren, Citation1985a

Type species

Plagiobatrachus australis Warren Citation1985a.

Plagiobatrachus australis Warren Citation1985a

1985, Plagiobatrachus australis Warren, p. 237.

Holotype

QM F12667, a vertebral centrum.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Doubts have been raised about the validity of Plagiobatrachus australis (Warren et al. Citation2009, Gee & Sidor Citation2022), with several specimens (see Warren Citation1985a) reassigned to Capulomala arcadiaensis (Warren et al. Citation2009).

BRACHYOPOIDEA Lydekker, Citation1885

Austropelor Longman, Citation1941

Type species

Austropelor wadleyi Longman, Citation1941.

Austropelor wadleyi Longman, Citation1941

1941 Austropelor wadleyi Longman, p. 29.

Holotype

QM F2628, a mandibular ramus fragment ().

Type locality, unit and age

Collected from the bed of the Brisbane River, ∼1.6 km southeast of Lowood west of Brisbane in southeastern Queensland, Australia. Warren & Hutchinson (Citation1983) recognized the source unit as the lower Marburg Sandstone (Clarence-Morton Basin), which has since been elevated to sub-group level (Wells & O’Brien Citation1994). The exposures at Lowood have thus been correlated with the Ma Ma Creek Member of the Koukandowie Formation (O’Brien & Wells Citation1994), which is likely Toarcian in age based on Pliensbachian–Toarcian plant fossils found in the underlying Gatton Sandstone (Jansson et al. Citation2008). The lower Marburg Subgroup was also considered a lateral equivalent of the Evergreen Formation (Surat Basin) by Exon (Citation1976) and Day et al. (Citation1983), which incorporates Pliensbachian to Aalenian (Lower to Middle Jurassic) deposits across the Surat Basin (La Croix et al. Citation2022).

Remarks

Austropelor wadleyi was initially interpreted as a capitosaurid (Longman Citation1941), but later classified as a stereospondyl (Colbert Citation1967) and has since been assigned to Brachyopoidea incertae sedis (Warren & Marsicano Citation2000b) or Stereospondyli incertae sedis (Schoch & Milner Citation2000).

BRACHYOPIDAE Lydekker, Citation1885

Bothriceps Huxley, Citation1859

Type species

Bothriceps australis Huxley, Citation1859.

Bothriceps australis Huxley, Citation1859

1859, Bothriceps australis Huxley, p. 649.

Holotype

NHMUK PV R23110, impressions of an isolated skull roof ( AM F4316 cast), partial palate and occipital region with articulated mandible.

Type locality, unit and age

Unspecified locality, possibly Eli Point near Koonya on the Tasman Peninsula in southeastern Tasmania, Australia (Warren et al. Citation2011). Warren et al. (Citation2011) suggested that the source unit was probably within the upper Parmeener Supergroup (Tasmania Basin), which spans the uppermost Permian to lowermost Triassic interval.

Remarks

Huxley (Citation1859) provided ambiguous source information for NHMUK PV R23110, although the type locality was assumed to be the Middle Triassic (Anisian) Hawkesbury Sandstone in New South Wales (Lydekker Citation1890, Moodie Citation1911). Watson (Citation1919, p. 44) emphasized that ‘the exact locality and of course the horizon are unknown’ and, subsequently, added that the ‘type—and only known specimen—was bought by the British Museum in 1848 from a person of whom nothing is known’ (Watson Citation1956, p. 422). Cosgriff (Citation1969, p. 80) otherwise stated that NHMUK PV R23110 ‘is believed to come from a locality in the Upper Permian Lithgow Coal Measures of the Sydney Basin in New South Wales’. Warren (Citation1997, p. 26) further explained that a ‘label associated with the specimen says it is from the “Hawkesbury Beds (Permian)”. This was probably an educated guess but could well be correct except that the Hawkesbury Sandstone of the Sydney Basin is now early Middle Triassic’. Conversely, the discovery of multiple new specimens of Bothriceps australis from Eli Point near Koonya in Tasmania suggests that this locality might have been the original source for NHMUK PV R23110 (Warren et al. Citation2011). Accordingly, Warren et al. (Citation2011, p. 740) reported that the ‘holotype was bought…from a Mrs. Musworthy’, at a time when, ‘…Koonya (then known as Cascades) was an outstation for the penal colony established at Port Arthur, some 15 km to the southeast. It seems likely that NHMUK 23110 was found on the rock platform at Koonya by someone associated with the colony, and sent to England without documentation of the precise locality of the find’ (Warren et al. Citation2011, pp. 746–749). Bothriceps australis was referred to Brachyopidae by Broom (Citation1915). This classification has since been followed by most studies (e.g., Welles & Estes Citation1969, Warren & Marsicano Citation1998, Warren et al. Citation2011), but Warren & Marsicano (Citation2000b) alternatively placed B. australis outside of Brachyopidae and within the more inclusive clade Brachyomorpha.

Batrachosuchus Broom, Citation1903a

Type species

Batrachosuchus henwoodi (Cosgriff, Citation1969) Warren & Marsicano, Citation1998.

Batrachosuchus henwoodi (Cosgriff, Citation1969) Warren & Marsicano, Citation1998

1969, Blinasaurus henwoodi Cosgriff, p. 68.

1998, Batarachosuchus henwoodi (Cosgriff) Warren & Marsicano, p 336.

Holotype

WAM 62.1.42, impressions of an isolated skull incorporating the internal skull roof and palatal surfaces.

Type locality, unit and age

UCMP locality V6041 on Blina Station in the Erskine Ranges of the West Kimberley District, Western Australia; Blina Shale (Canning Basin), upper Induan to lower Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Haig et al. Citation2015).

Remarks

Initially referred to Blinasaurus by Cosgriff (Citation1969) but transferred to Batrachosuchus by Warren & Marsicano (Citation1998).

Platycepsion Kuhn, Citation1961

Type species

Platycepsion wilkinsoni (Stephens, Citation1887c) Kuhn, Citation1961.

Platycepsion wilkinsoni (Stephens, Citation1887c) Kuhn, Citation1961.

1887, Platyceps wilkinsonii Stephens, p. 1181.

1890, Bothriceps wilkinsonii (Stephens) Lydekker, p. 172.

1961, Platycepsion wilkinsonii (Stephens) Kuhn, p. 79.

1969, Blinasaurus wilkinsoni (Stephens) Cosgriff, p. 68.

1969, Bothriceps wilkinsoni (Stephens) Welles & Estes, p. 21.

1998, Platycepsion wilkinsoni (Stephens) Warren & Marsicano, p. 333.

Holotype

NSWGS F12572, articulated incomplete skeleton incorporating the skull roof with branchial bars, neural arches and ribs, the pectoral girdle and elements of the pelvic girdle and right hind limb.

Type locality, unit and age

The Railway Ballast Quarry near Gosford in northeastern New South Wales, Australia; Terrigal Formation of the Narrabeen Group (Sydney Basin), mid-Olenekian to lower Anisian (Lower to Middle Triassic) Aratrisporites tenuispinosus Palynomorph Zone (sensu Helby Citation1973, Morante Citation1996).

Remarks

Lydekker (Citation1890) reported that Platyceps, as established by Stephens (Citation1887c), was preoccupied, and suggested that Platyceps wilkinsoni was likely a ‘juvenile’ individual of Bothriceps (see also Welles & Estes Citation1969). Nonetheless, the name Platyceps wilkinsoni continued to be used in many subsequent studies (e.g., Feistmantel Citation1890, Moodie Citation1911, Chapman Citation1914, Watson Citation1919, Howchin 1925–Citation1930, Longman Citation1941). Romer (Citation1947) alternatively listed the species as ‘Platycepswilkinsoni (see also Watson Citation1956, Hills Citation1958), with Kuhn (Citation1961) finally proposing the replacement name Platycepsion. Cosgriff (Citation1969) otherwise designated P. wilkinsoni the type species of Blinasaurus, a generic epithet that persisted (except in Shishkin Citation1973) until Warren & Marsicano (Citation1998) revived Platycepsion as the senior synonym. Witzmann & Schoch (Citation2022) recently demonstrated that NSWGS F12572 represents a larval brachyopid, as initially interpreted by Stephens (Citation1887c), thus we restrict P. wilkinsoni to distinguish the holotype only.

Notobrachyops Cosgriff, Citation1967

Type species

Notobrachyops picketti Cosgriff, Citation1967.

Notobrachyops picketti Cosgriff, Citation1967

1967, Notobrachyops picketti Cosgriff, p. K4–K5.

1973, Notobrachyops picketti (Cosgriff) Cosgriff, p. 1096.

Holotype

NSWGS F8258, an impression of the skull roof with parts of the occipital region.

Type locality, unit and age

Hurstville Brick Company quarry at Mortdale in metropolitan Sydney, New South Wales, Australia; Rouse Hill Siltstone Member of the Ashfield Shale in the Wianamatta Group (Sydney Basin), mid-Anisian (Middle Triassic) Aratrisporites parvispinosus Palynomorph Zone (Herbert Citation1983, Citation1997, Helby et al. Citation1987, Metcalfe et al. Citation2015).

Remarks

Cosgriff (Citation1967) initially named Notobrachyops picketti in an abstract, but later described the taxon in more detail (Cosgriff Citation1973). Warren & Marsicano (Citation1998) advocated placement of N. picketti within Brachyopidae, although its relationships remain uncertain (Warren & Marsicano Citation2000b).

Xenobrachyops Warren & Hutchinson, Citation1983

Type species

Xenobrachyops allos (Howie, Citation1972a) Warren & Hutchinson, Citation1983.

Xenobrachyops allos

1972a, Brachyops allos Howie, p. 270.

1983, Xenobrachyops allos (Howie) Warren & Hutchinson, p. 59.

Holotype

QM F6572, an isolated intact skull and palate ().

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Xenobrachyops allos was initially referred to Brachyops Owen, Citation1855 by Howie (Citation1972a). Several mandibular (Warren Citation1981a, Warren Citation1981b, Jupp & Warren Citation1986) and pectoral girdle elements (Warren & Marsicano Citation2000b) have also been assigned to this taxon.

Banksiops Warren & Marsicano, Citation2000a

Type species

Banksiops townrowi (Cosgriff, Citation1974) Warren & Marsicano, Citation2000a.

Banksiops townrowi (Cosgriff, Citation1974) Warren & Marsicano, Citation2000a

1974, Blinasaurus townrowi Cosgriff, p. 7.

1998, Banksia townrowi (Cosgriff) Warren & Marsicano, p. 338.

2000, Banksiops townrowi (Cosgriff) Warren & Marsicano, p. 186.

Holotype

UTGD 87785, an isolated skull including the cranial roof and palate.

Type locality, unit and age

‘Old Beach’ locality on the eastern shore of the Derwent River north of Hobart in Tasmania, Australia; Knocklofty Formation (Tasmanian Basin) correlated with Induan to lower Olenekian (Lower Triassic) vertebrate assemblages by Ezcurra (Citation2014).

Remarks

Cosgriff (Citation1969, Citation1974) initially assigned Banksiops townrowi to Blinasaurus, with the preoccupied genus name Banksia Warren & Marsicano, Citation1998 replaced with Banksiops by Warren & Marsicano (Citation2000a).

CHIGUTISAURIDAE Rusconi, Citation1948

Keratobrachyops Warren, Citation1981a

Type species

Keratobrachyops australis Warren, Citation1981a.

Keratobrachyops australis Warren, Citation1981a

1981, Keratobrachyops australis Warren, p. 274.

Holotype

QM F10115, a fragmented skull with articulated mandibular rami ().

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Keratobrachyops australis has been unambiguously classified within Chigutisauridae by Warren (Citation1981a), Sengupta (Citation1995), Damiani & Warren (Citation1996), Schoch & Milner (Citation2000), Warren & Marsicano (Citation2000b), and Dias-Da-Silva et al. (Citation2012).

Siderops Warren & Hutchinson, Citation1983

Type species

Siderops kehli Warren & Hutchinson, Citation1983.

Siderops kehli Warren & Hutchinson, Citation1983

1977, Jurassic labyrinthodont, Warren, p. 436.

1983, Siderops kehli Warren & Hutchinson, p. 5.

Holotype

QM F7882, an articulated skull, mandible, and largely intact postcranial skeleton incorporating vertebral column, ribs, limb girdles and both fore- and hind limbs ().

Type locality, unit and age

Locality west of Kennedy Peak on Kolane Station, ∼60 km north of Wandoan in southeastern Queensland, Australia; Westgrove Ironstone Member of the Evergreen Formation (Surat Basin); this site was constrained to a late Toarcian (Early Jurassic) maximum depositional age of 176.6 ± 2.0 Ma by Todd et al. (Citation2019). The Westgrove Ironstone Member is more broadly correlated with Pliensbachian to Aalenian (Lower to Middle Jurassic) strata across the Surat Basin (La Croix et al. Citation2022).

Remarks

Warren (Citation1977) published an initial short report on the discovery of QM F7882 and its novel stratigraphical occurrence as an unambiguous Jurassic temnospondyl. However, Siderops kehli was later formally named with an exhaustive description by Warren & Hutchinson (Citation1983). Siderops kehli is consistently resolved amongst brachyopoids (e.g., Warren & Marsicano Citation2000b, Ruta et al. Citation2007, Schoch Citation2013, Gee Citation2022), and classified within Chigutisauridae (Marsicano Citation1999). Other records of Jurassic temnospondyl fossils have since been reported from southern Africa (Kitching & Raath Citation1984, Steyer & Damiani Citation2005), Kyrgyzstan (Nessov Citation1988, Averianov et al. Citation2008), Mongolia (Shishkin Citation1991), China (Dong Citation1985, Maisch et al. Citation2004, Maisch & Matzke Citation2005), and Thailand (Buffetaut et al. Citation1994a, Citation1994b, Nonsrirach et al. Citation2021).

Koolasuchus Warren, Rich & Vickers-Rich, Citation1997

Type species

Koolasuchus cleelandi Warren, Rich & Vickers-Rich, Citation1997.

Koolasuchus cleelandi Warren, Rich & Vickers-Rich, Citation1997

1997, Koolasuchus cleelandi Warren, Rich & Vickers-Rich, p. 5.

Holotype

NMV P186213, associated right and left mandibular rami ().

Type locality, unit and age

West end of Rowells Beach, east of Potters Hill Road in Kilcunda on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

The first specimen of Koolasuchus cleelandi was found in 1979, but comprised only an edentulous mandible fragment (NMV P156988) whose identifications ‘ranged from a crocodile to an ornithischian dinosaur or even a labyrinthodont amphibian’ (Flannery & Rich Citation1981, p. 197). Jupp & Warren (Citation1986, p. 120) stated that the ‘main obstacle to accepting NMV P156988 as a labyrinthodont amphibian is its Early Cretaceous age.’ However, subsequent discoveries have unambiguously confirmed the status of K. cleelandi as the geologically youngest temnospondyl (Warren et al. Citation1991, Warren et al. Citation1997) and member of the Gondwanan clade Chigutisauridae (Warren et al. Citation1997, Marsicano Citation1999). The recent recovery and forthcoming description of several partial skulls (e.g., Poropat et al. Citation2018, Warren & Marsicano Citation2000b) will undoubtedly yield new insights into the palaeobiology and relationships of K. cleelandi, which became the Victorian State Fossil Emblem in 2022.

REPTILIA Linnaeus, Citation1758

PARAREPTILIA Olson, Citation1947 (sensu Laurin & Reisz, Citation1995)

PROCOLOPHONOIDEA Romer, Citation1956

PROCOLOPHONIDAE Lydekker in Nicholson & Lydekker, Citation1889

Eomurruna Hamley, Cisneros & Damiani, Citation2021

Type species

Eomurruna yurrgensis Hamley, Cisneros & Damiani, Citation2021.

Eomurruna yurrgensis Hamley, Cisneros & Damiani, Citation2021

1970, ?Paliguanid, Bartholomai & Howie, p. 1063.

1971, Procolophon, Romer, p. 114.

Citation2006, Arcadia procolophonid, Cisneros Martínez, p. 76.

2021, Eomurruna yurrgensis Hamley, Cisneros & Damiani, p. 560.

Holotype

QM F18335, an articulated skull and mandible with accompanying postcranial skeleton incorporating vertebral column and ribs with the pectoral and pelvic girdle and right fore- and hind limb elements ().

Fig. 3. Australian Mesozoic procolophonids, basal neodiapsids, and ichthyosaurians. A, Eomurunna yurrgensis (QM F49510; referred specimen) skull and mandible in right lateral view. Scale = 3 mm. B, Eomurunna yurrgensis (QM F18335; holotype) skull and postcranial skeleton. Scale = 5 cm. C, Kudnu mackinlayi (QM F9181; holotype) partial skull in left lateral view. Scale = 5 mm. D, Kudnu mackinlayi (QM F9182; referred specimen) partial skull in left lateral view. Scale = 5 mm. E, Platypterygius australis (QM F2453; referred specimen), skull and partial skeleton. Scale = 30 cm.

Fig. 3. Australian Mesozoic procolophonids, basal neodiapsids, and ichthyosaurians. A, Eomurunna yurrgensis (QM F49510; referred specimen) skull and mandible in right lateral view. Scale = 3 mm. B, Eomurunna yurrgensis (QM F18335; holotype) skull and postcranial skeleton. Scale = 5 cm. C, Kudnu mackinlayi (QM F9181; holotype) partial skull in left lateral view. Scale = 5 mm. D, Kudnu mackinlayi (QM F9182; referred specimen) partial skull in left lateral view. Scale = 5 mm. E, Platypterygius australis (QM F2453; referred specimen), skull and partial skeleton. Scale = 30 cm.

Type locality, unit and age

Duckworth Creek (QM L215) near Bluff in east-central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Eomurruna yurrgensis is the only procolophonid currently documented from Australia (Hamley et al. Citation2021). Abundant remains have been referred to this taxon from the ‘The Crater’ locality (QM L78) of the Arcadia Formation (), including an articulated skull and mandible (QM F6704) that Bartholomai & Howie (Citation1970) identified as a possible paliguanid. Romer (Citation1971) latter attributed this specimen to Procolophonidae, thereby establishing the classification recognized by all subsequent studies (Warren Citation1972, Colbert & Kitching Citation1975, Molnar Citation1982, Citation1991, Hamley et al. Citation2021).

EUREPTILIA Olson, Citation1947

DIAPSIDA Osborn, Citation1903

NEODIAPSIDA Benton, Citation1985

Kudnu Bartholomai, Citation1979

Type species

Kudnu mackinlayi Bartholomai, Citation1979.

Kudnu mackinlayi Bartholomai, Citation1979

1979, Kudnu mackinlayi Bartholomai, p. 231.

Holotype

QM F9181, the anterior section of a cranium with articulated dentary rami ().

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Kudnu mackinlayi () was initially identified as a lepidosaur and assigned to Paliguanidae by Bartholomai (Citation1979). Subsequent interpretations have ranged from an indeterminate lepidosauromorph (Benton Citation1985, Conrad Citation2008), osteologically immature prolacertiform (Evans Citation2003), a possible procolophonid (Evans & Jones Citation2010), or a neodiapsid or saurian of uncertain affinity (Ezcurra et al. Citation2022).

ICHTHYOSAUROMORPHA Motani, Jiang, Chen, Tintori, Rieppel, Ji & Huang, Citation2015

ICHTHYOSAURIFORMES Motani, Jiang, Chen, Tintori, Rieppel, Ji & Huang, Citation2015

ICHTHYOPTERYGIA Owen, Citation1840

ICHTHYOSAURIA de Blainville, Citation1835

OPHTHALMOSAURIA Motani, Citation1999

BRACHYPTERYGIIDAE Cortés, Maxwell & Larsson, Citation2021

Platypterygius von Huene, Citation1922

Type species

Platypterygius platydactylus (Broili, Citation1907) von Huene, Citation1922.

Platypterygius australis (M’Coy, Citation1867) McGowan, Citation1972 sensu Zammit, Citation2010

1867, Ichthyosaurus australis M’Coy, p. 356.

1888, Ichthyosaurus marathonensis Etheridge, p. 408.

1922, Myopterygius marathonensis (Etheridge) von Huene, p. 96, 98.

1944, Myopterygius australis (M’Coy) Teichert & Matheson, p. 169.

1972, Platypterygius australis (M’Coy) McGowan, p. 16.

1990, Platypterygius longmani Wade, p. 120.

2003, Platypterygius longmani Kear, p. 284.

2005a, Platypterygius longmani Kear, p. 584.

Neotype

NMV P12989, incomplete cranium comprising nasal and orbital regions with an articulated basioccipital and atlas-axis complex. The type material also includes associated vertebral centra NMV P12992, NMV P22653, NMV P22654, and NMV P22656–NMV P22661 (see Zammit Citation2010).

Type locality, unit and age

Reportedly collected at ‘Lat. 21° 13′S and Long. 143° 25′E (M’Coy 1865), north Queensland’ (Hell Citation2001, p. 294). These coordinates pinpoint a locality between the O’Connell and Walker creeks (or ‘Walker and O’Connell Creeks left bank of the river’: Hell Citation2001, p. 294), south of the Flinders River and southwest of Hughenden in central-northern Queensland, Australia. Zammit (Citation2010) listed the source unit as the Allaru Mudstone in the Wilgunya Subgroup of the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Endoceratium ludbrookae Dinocyst Zone (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

McGowan (Citation1972) established the generic reassignment of Platypterygius australis (), which was later updated by McGowan & Motani (Citation2003). Zammit (Citation2010) proposed the neotype cranium, NMV P12989, to replace the historically unidentified holotype that was anecdotally attributed to non-diagnostic vertebral centra (see Wade Citation1984, Hell Citation2001, Zammit Citation2010). Arkhangelsky (Citation1998, p. 612) additionally created the subgenus P. (Longirostria) australis to accommodate ‘Platypterygius longmani’ and Platypterygius (Longirostria) hauthali von Huene, Citation1927. However, McGowan & Motani (Citation2003) synonymized Longirostria with Platypterygius, a genus that is also now conceptually restricted to the type species, Platypterygius platydactylus (e.g., Cortés et al. Citation2021). Accordingly, Fischer (Citation2016) concluded that P. australis could be a potential type species for the genus Myopterygius von Huene, Citation1922, which was initially erected to accommodate the species group incorporating ‘Ichthyosaurusmarathonensis (Huene Citation1922). The intended type species of Myopterygius was probably ‘Ichthyosauruscampylodon (Carter Citation1846), although this was never formally designated (Fischer Citation2016). Consequently, Fischer (Citation2016) transferred ‘I.campylodon to Pervushovisaurus Arkhangelsky, Citation1998—another subgeneric synonym of Platypterygius (see McGowan & Motani Citation2003) elevated to genus-level by Fischer et al. (Citation2014). This decision has rendered the formal generic assignment of P. australis uncertain. Furthermore, the priority of Myopterygius versus Longirostria remains unresolved since neither epithet is diagnostically consistent with P. australis. We, therefore, provisionally retain the referral of P. australis to Platypterygius pending a more detailed taxonomic assessment.

SAUROPTERYGIA Owen, Citation1860b

PISTOSAUROIDEA Baur, 1887 in Zittel, 1887–Citation1890

PLESIOSAURIA de Blainville, Citation1835

PLIOSAURIDAE Seeley, Citation1874

BRACHAUCHENINAE Williston, Citation1925 (sensu Benson & Druckenmiller Citation2014)

Kronosaurus Longman, Citation1924

Type species

Kronosaurus queenslandicus Longman, Citation1924, as revised by McHenry (Citation2009).

Kronosaurus queenslandicus Longman, Citation1924

1924, Kronosaurus queenslandicus Longman, p. 26.

1991, Kronosaurus queenslandicus? Molnar, p. 613.

2022, Eiectus longmani Noè & Goméz-Pérez, p. 6.

Type material

QM F1609 (holotype), weathered paired jaw bone fragments containing remnants of six teeth. QM F18827 (proposed neotype), articulated skull and mandible () with associated cervical and pectoral vertebrae, components of the pectoral girdle and proximal end of the humerus (see McHenry Citation2009, pp. 180–185).

Fig. 4. Australian Mesozoic sauropterygians. A, Eiectus longmani (MCZ 1285; holotype) in left lateral view (Wikimedia Commons). Scale = 1 m. B, Kronosaurus queenslandicus (QM F18827; proposed neotype [part]) skull in dorsal view (modified from McHenry Citation2009). Scale = 30 cm. C, Elasmosauridae incertae sedis (QM F3567; holotype [part] of Woolungasaurus glendowerensis) partial forelimb. Scale = 5 cm. D, Opallionectes andamookaensis (SAMA P24560; holotype) partial postcranial skeleton in dorsal view. Scale = 30 cm. E, Polycotylidae incertae sedis (AM F6268; holotype [part] of Cimoliasaurus leucoscopelus) cervical vertebra in anterior view. Scale = 3 cm. F, Leptocleidus clemai (WAM 92.8.1; holotype [part]) humerus of assigned specimen in dorsal view. Scale = 3 cm. G, Umoonasaurus demoscyllus (AM F99374; holotype [part]) partial skull in dorsal view. Scale = 5 cm. Eromangasaurus australis (QM F11050; holotype [part]) skull in H, left lateral and I, right oblique ventral views. Scale = 5 cm.

Fig. 4. Australian Mesozoic sauropterygians. A, Eiectus longmani (MCZ 1285; holotype) in left lateral view (Wikimedia Commons). Scale = 1 m. B, Kronosaurus queenslandicus (QM F18827; proposed neotype [part]) skull in dorsal view (modified from McHenry Citation2009). Scale = 30 cm. C, Elasmosauridae incertae sedis (QM F3567; holotype [part] of Woolungasaurus glendowerensis) partial forelimb. Scale = 5 cm. D, Opallionectes andamookaensis (SAMA P24560; holotype) partial postcranial skeleton in dorsal view. Scale = 30 cm. E, Polycotylidae incertae sedis (AM F6268; holotype [part] of Cimoliasaurus leucoscopelus) cervical vertebra in anterior view. Scale = 3 cm. F, Leptocleidus clemai (WAM 92.8.1; holotype [part]) humerus of assigned specimen in dorsal view. Scale = 3 cm. G, Umoonasaurus demoscyllus (AM F99374; holotype [part]) partial skull in dorsal view. Scale = 5 cm. Eromangasaurus australis (QM F11050; holotype [part]) skull in H, left lateral and I, right oblique ventral views. Scale = 5 cm.

Type locality, unit and age

QM F1609 was derived from an unspecified locality in the Hughenden region of central-northern Queensland, Australia (Longman Citation1924). Longman (Citation1930, p. 1) also attributed two incomplete propodials (QM F2137) and some weathered bone fragments (apparently occurring together with a caudal vertebral series: Romer & Lewis Citation1959) from a locality ‘two miles [∼3.2 km] south of Hughenden’. QM F18827 was recovered ‘from the airstrip on Lucerne Station, [∼9 km] north of Richmond’ (McHenry Citation2009, p. 180). McHenry (Citation2009) identified the type unit as the Toolebuc Formation in the Wilgunya Subgroup of the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Despite early reports of ‘comprehensive undescribed material’ being available for study at the QM (Persson Citation1960, p. 4), Welles (Citation1962, p. 48) designated Kronosaurus queenslandicus a nomen vanum (= name designated on fragmentary type remains: Mones Citation1989), and recommended establishment of a neotype based on the ‘material at Harvard University’ (presumably referring to the incomplete skull and skeleton MCZ 1285: White Citation1935, Anonymous Citation1959, Fletcher Citation1959, Romer & Lewis Citation1959). Persson (Citation1960, p. 4) likewise refrained from documenting the QM specimens ‘before a description of the Harvard skeleton has been published’. Nevertheless, White (Citation1935) and Romer & Lewis (Citation1959) had already described MCZ 1285 and a second premaxillary rostrum with associated symphyseal section of the mandible (MCZ 1284: see White Citation1935) in some detail.

Clearly, these initial first-hand examinations (e.g., Longman Citation1924, Citation1930, White Citation1935, Romer & Lewis Citation1959) and subsequent reviews (e.g., Persson Citation1960, Welles Citation1962) assumed a conspecific assignment of the then accessioned QM and MCZ fossils. However, Molnar (Citation1982, Citation1991, p. 633) reiterated that ‘K. queenslandicus is based on very incomplete material’ (QM F1609), and although ‘[more] complete specimens of probable K. queenslandicus’ had been collected by the QM, ‘no attempt at adequate comparison with the type material [had] yet been carried out’. Moreover, Molnar (Citation1982, p. 186, 1991, p. 633) noted that the ‘Harvard kronosaur’ (MCZ 1285) was excavated from an upper Aptian deposit of the Doncaster Member in the Wallumbilla Formation (Wilgunya Subgroup) north of Richmond, whereas QM F1609 and a ‘second partial skull (QM F24446 [sic QM F2446])’ were both derived from the upper Albian Toolebuc Formation near Hughenden. QM F2446 was reportedly ‘very broad, low, and flat (at least 87 cm across by only 13 cm high), with large upwardly directed orbits’ (see Molnar Citation1991, p. 632, fig. 15), whereas the ‘Harvard skull (MCZ 1285) seems deeper’ (Molnar Citation1982, p. 186, Molnar Citation1991, p. 633). As acknowledged by Molnar (Citation1991, p. 633), though, ‘[t]he Harvard skeleton is less complete than appears from the mount’. Indeed, White (Citation1935, p. 220) explicitly stated that the extensively restored skull of MCZ 1285 included only ‘the brain case with left quadrate attached and the posterior end of the lower jaw, a section of the face containing the anterior border of the left orbit and left external naris, a portion of the rostrum showing the maxillary-premaxillary suture, and a portion of the mandibular symphysis showing the division of the two rami’. Its original cranial proportions are, therefore, uncertain. Furthermore, the long-awaited comprehensive inspection of K. queenslandicus remains from QM and MCZ by McHenry (Citation2009, p. 427) found ‘no evidence that more than one taxon of large pliosaur is present in the Toolebuc fauna…, and that [all of] this material can be confidently assigned to Kronosaurus queenslandicus Longman’. McHenry (Citation2009, p. 429) continued with ‘the Doncaster material [MCZ 1284, MCZ 1285] is referrable to Kronosaurus’ because the ‘premaxillae bear four teeth’, which McHenry (Citation2009) considered diagnostic. The differences in cranial proportions mentioned by Molnar (Citation1991) were also ‘undoubtedly a result of taphonomy’ (McHenry Citation2009, p. 430). Finally, ‘assignment of the Doncaster [Member] Kronosaurus specimens to Kronosaurus queenslandicus [was] maintained, pending the results of future examination, as this taxonomy reflects the most parsimonious interpretation of the available data’ (McHenry Citation2009, p. 431). We concur with these findings, which have since been reinforced by studies attributing other morphologically consistent specimens from stratigraphically proximal Rolling Downs Group strata of the upper Aptian Bulldog Shale (Marree Subgroup), upper Aptian Doncaster Member of the Wallumbilla Formation in New South Wales, and the upper Albian Allaru Mudstone (e.g., Kear Citation2005b, Citation2006a, Holland Citation2018).

Regardless, Noè & Goméz-Pérez (Citation2022, p. 6) examined a painted plaster cast of QM F1609 (MCZ 2445) and posited that ‘[in] the absence of diagnostic features of the holotype, the genus Kronosaurus and the type species Kronosaurus queenslandicus cannot be satisfactorily diagnosed or compared to other pliosaurid material. To date, as no diagnostic neotype has been formally designated (as proposed by Welles Citation1962; Molnar [Citation1982]; McHenry Citation2009), the taxonomic name (genus, and nominotypical and only species), Kronosaurus queenslandicus, must be restricted to the holotype specimen QM F1609, which should be considered Pliosauridae (?Brauchauchiniinae [sic Brachaucheninae]) indet.’ This patently ignored McHenry’s (Citation2009, p. 257) unambiguous recognition that ‘there is no indication of more than one taxon of large pliosaur from the Toolebuc Formation, [therefore] the holotype can be assumed to represent the same species as the more complete specimens … [in] particular, QM F18827 preserves all of the features—premaxillary tooth count, mandibular symphysis, tooth shape and ornamentation, anisodonty of the tooth row, vertebral centra morphology—that can separate the Toolebuc Formation large pliosaur taxon from all other currently described species of pliosaur’. A second specimen of K. queenslandicus from the Toolebuc Formation comprising an articulated postcranial skeleton (QM F10113) was also nominated to distinguish K. queenslandicus from the apparently closely related taxon Monquirasaurus boyacensis (Hampe, 2002), which was referred to Kronosaurus by Hampe (Citation1992). Consequently, we again support McHenry’s (Citation2009, p. 257) conclusion that ‘[either] of these two specimens may be appropriate candidates for the name-bearing specimen for Kronosaurus queenslandicus. Under the International Committee of Zoological Nomenclature (ICZN) rules, re-allocation of the type specimen for a species, on the grounds that the holotype has not been lost or destroyed, but is non-diagnostic, requires a petition to the ICZN committee. It is recommended that this action be taken in order to retain Kronosaurus queenslandicus Longman Citation1924 as a valid species’. Accordingly, we reject the suggestion of Noè & Gómez-Pérez (Citation2022, p. 6) that because ‘only a single genus (and possibly species) of giant sized pliosaurid [is evident in the] Australian Aptian–Albian deposits (McHenry Citation2009) … all material previously assigned to Kronosaurus or Kronosaurus queenslandicus [should be provisionally assigned to a] new genus’. In our opinion, this creates unwarranted taxonomic instability via merger of Kronosaurus and potentially K. queenslandicus with obvious junior synonyms. Moreover, Noè & Gómez-Pérez (Citation2022) listed (but did not redescribe) MCZ 1285 as a replacement holotype, which is inadequate since it comprises a notoriously inaccurate plaster reconstruction (McHenry Citation2009) incorporating severely weathered and incomplete embedded fossil components (see Romer & Lewis Citation1959). The extent of restoration has even instigated a popular nickname, ‘Plasterosaurus’, and calls for disassembly and CT scanning of MCZ 1285 to detect any taxonomically informative original bone material (see Tembe & Siddiqui Citation2014, p. 55). In the interim, we adhere to the diagnoses of McHenry (Citation2009) and others (e.g., Holland Citation2018), which justifiably classified the stratigraphically conformable upper Albian Toolebuc Formation and Allaru Mudstone brachauchenine fossils as K. queenslandicus, with QM F18827 representing the most feasible neotype pending a detailed redescription and formal nomenclatural ruling by the ICZN.

Eiectus Noè & Goméz-Pérez, Citation2022

Type species

Eiectus longmani Noè & Goméz-Pérez, Citation2022.

Eiectus longmani Noè & Goméz-Pérez, Citation2022

1991, Kronosaurus sp. Molnar, p. 613.

1993, ?Kronosaurus sp. Thulborn & Turner, p. 491.

2022, Eiectus longmani Noè & Goméz-Pérez, p. 6.

Holotype

MCZ 1285, an incomplete skull, mandible and postcranial skeleton embedded within a reconstructed plaster exhibition mount ().

Type locality, unit and age

MCZ 1285 was reportedly excavated in the vicinity of Army Downs bore ‘five miles [∼8 km] further north’ of another referred specimen, MCZ 1284, which was recovered ‘30 miles [∼48 km] to the north of Richmond’ in central-northern Queensland, Australia (Romer & Lewis Citation1959, p. 1). Based on this locality information, the source unit has been interpreted as the Doncaster Member of the Wallumbilla Formation in the Wilgunya Subgroup of the Rolling Downs Group (Eromanga Basin); correlated with the upper Aptian (Lower Cretaceous) Muderongia australis and lower Odontochitina operculata dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Noè & Goméz-Pérez (Citation2022, p. 6) erected Eiectus longmani to accommodate ‘all material previously assigned to Kronosaurus or Kronosaurus queenslandicus’. However, because this prioritizes a junior synonym based on a reconstructed display mount manifesting unconfirmable diagnostic character states, we restrict E. longmani to define only MCZ 1285 and MCZ 1284 until a more rigorous evaluation is carried out. This acknowledges the unresolved possibility of taxonomic distinction from the upper Albian Toolebuc Formation/Allaru Mudstone K. queenslandicus as diagnosed by McHenry (Citation2009) using the holotype QM F1609, proposed neotype QM F18827, and referred specimen QM F10113 (see also Holland [Citation2018] for a differential diagnosis).

PLESIOSAUROIDEA Welles, Citation1943 (sensu Ketchum & Benson, Citation2010)

CRYPTOCLEIDIDAE Williston, Citation1925

Opallionectes Kear, Citation2006a

Type species

Opallionectes andamookaensis Kear, Citation2006a.

Opallionectes andamookaensis Kear, Citation2006a

2006, Opallionectes andamookaensis Kear, p. 840.

Holotype

SAMA P24560, incomplete articulated skeleton comprising teeth, vertebrae and ribs, pectoral girdle, and limb elements ().

Type locality, unit and age

Lunatic Hill opal field near Andamooka, west of Lake Torrens in northeastern South Australia, Australia. The opal-bearing strata at Andamooka form part of the Bulldog Shale in the Marree Subgroup of the Rolling Downs Group (Eromanga Basin). An upper Aptian (Lower Cretaceous) range has been determined for the Andamooka opal-bearing deposits based mainly on bivalves and ammonites (Ludbrook Citation1966, Day Citation1969), together with the age-diagnostic belemnite Peratobelus Whitehouse, Citation1924 (Henderson et al. Citation2000, Williamson Citation2006). This correlates with the Muderongia australis and lower Odontochitina operculata dinocyst zones (sensu Partridge Citation2006) as recognized by Krieg & Rogers (Citation1995) and Alexander & Sansome (Citation1996), and recalibrated by Foley et al. (Citation2022).

Remarks

Although Kear (Citation2006a) treated the family-level assignment of Opallionectes andamookaensis as indeterminate within Plesiosauroidea, we follow Kear (Citation2016) and Kear et al. (Citation2018) in formally referring the taxon to Cryptocleididae.

LEPTOCLEIDIA Ketchum & Benson, Citation2010

Leptocleidus Andrews, Citation1922

Type species

Leptocleidus superstes Andrews, Citation1922.

Leptocleidus clemai Cruickshank & Long, Citation1997

1997 Leptocleidus clemai Cruickshank & Long, p. 268.

Holotype

WAM 92.8.1, associated vertebral centra, neural arches and ribs, limb girdle components (), at least three propodials, and other bone fragments.

Type locality, unit and age

Cruickshank & Long (Citation1997) withheld the type locality information for security, although Mory et al. (Citation2005) reported that the plesiosaurian remains described by Cruickshank & Long (Citation1997) derived from ‘Stone Wall’ on the southern side of Pillawarra Plateau, on Murchison House Station northeast of Kalbarri in southwestern Western Australia. Cruickshank & Long (Citation1997) further identified the source unit as the Birdrong Sandstone; however, Kear et al. (Citation2018) re-attributed these fossils to the Windalia Sandstone Member of the Muderong Shale (see Mory et al. Citation2005), which spans the upper Barremian–lower Aptian (Lower Cretaceous) Muderongia testudinariaMuderongia australis dinocyst zones (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Leptocleidus clemai has been variously compared with pliosaurids (Cruickshank & Long Citation1997), leptocleidids (e.g., Kear Citation2016), and polycotylids (e.g., Smith & Dyke Citation2008). The genus-level attribution, and even species-level validity (Druckenmiller & Russell Citation2008) of this taxon are also doubtful (Kear & Barrett Citation2011). Nevertheless, both WAM 92.8.1 and the other referred specimens, WAM 94.1.6 and WAM 95.5.2, can be morphologically distinguished amongst leptocleidians (see Kear Citation2016). Consequently, we follow recent classifications that retain L. clemai as valid taxon within Leptocleidia (Kear et al. Citation2018).

Umoonasaurus Kear, Schroeder & Lee, Citation2006

Type species

Umoonasaurus demoscyllus Kear, Schroeder & Lee, Citation2006.

Umoonasaurus demoscyllus Kear, Schroeder & Lee, Citation2006

1999, Leptocleidus sp. Cruickshank, Fordyce & Long, p. 204.

2003, Leptocleidus sp. Kear, p. 294.

2006a, Leptocleidus sp. Kear, p. 848.

2006b, Umoonasaurus demoscyllus Kear, Schroeder & Lee, p. 615.

Citation2007a, cf. Leptocleidus sp. Kear, p. 155.

Holotype

AM F99374, skull with fragmentary mandible and dentition (), and an articulated posterior cervical to caudal axial skeleton, partial limb girdles, propodials and some distal limb elements.

Type locality, unit and age

Zorba Extension opal field west of Coober Pedy in central-northern South Australia, Australia. These strata form part of the Bulldog Shale in the Marree Subgroup of the Rolling Downs Group (Eromanga Basin). An upper Aptian (Lower Cretaceous) range has been determined for the opal-bearing deposits of Coober Pedy and surrounding areas based on bivalves, ammonites (Ludbrook Citation1966, Day Citation1969), and the age-diagnostic belemnite Peratobelus (Henderson et al. Citation2000, Williamson Citation2006). This correlates with the Muderongia australis and lower Odontochitina operculata dinocyst zones (sensu Partridge Citation2006) as recognized by Krieg & Rogers (Citation1995) and Alexander & Sansome (Citation1996), and recalibrated by Foley et al. (Citation2022).

Remarks

Although initially assigned to Rhomaleosauridae (Kear et al. Citation2006), Umoonasaurus demoscyllus has been alternately referred to Leptocleididae (Benson et al. Citation2013a) or Polycotylidae (Druckenmiller & Russell Citation2008). We, therefore, conservatively classify this taxon within the more inclusive clade Leptocleidia.

POLYCOTYLIDAE Williston, Citation1908

Polycotylidae incertae sedis

1897, Cimoliosaurus leucoscopelus Etheridge, p. 24.

1960, Dolichorhynchops? sp. Persson, p. 4.

1962, Dolichorhynchops sp. Welles, p. 46.

1982, Dolichorhynchops? leucoscopelus Molnar, p. 186.

1991, ‘?Trinacromeronleucoscopelus Molnar, p. 612.

2003, Polycotylidae gen. et sp. indet. Kear, p. 289.

2005b, Polycotylidae gen. et sp. indet. Kear, p. 775.

Remarks

Etheridge (Citation1904, p. 306) used the incorrect spelling ‘Cimoliosaurus’, rather than Cimoliasaurus Leidy, Citation1851, derived from the type species Cimoliasaurus magnus Leidy, Citation1851. We, thus, designate ‘Cimoliosaurusleucoscopelus (= Cimoliasaurus leucoscopelus: see Kear Citation2002b, Citation2003, Citation2005b; ) a nomen dubium following Kear (Citation2003, Citation2005b).

ELASMOSAURIDAE Cope, Citation1870

Elasmosauridae incertae sedis

1867, Plesiosaurus macrospondylus M’Coy, p. 356.

1914, Pliosaurus macrospondylus Chapman, p. 278.

1960, Elasmosauridae gen. et sp. indet. Persson, p. 18.

1962, Elasmosauridae gen. et sp. indet. Welles, p. 49.

2003, Elasmosauridae gen. et sp. indet. Kear, p. 286.

Remarks

We designate Plesiosaurus macrospondylus a nomen dubium following Kear (Citation2003).

Elasmosauridae incertae sedis

1867, Plesiosaurus sutherlandi M’Coy, p. 356.

1904, Cimoliosaurus sutherlandi Etheridge, p. 312.

1914, Pliosaurus sutherlandi Chapman, p. 278.

1960, Cimoliasauridae gen. et sp. indet. Persson, p. 10.

2003, Elasmosauridae gen. et sp. indet. Kear, p. 286.

Remarks

See previous comment on the misspelling of Cimoliasaurus by Etheridge (Citation1904). We designate Plesiosaurus sutherlandi a nomen dubium following Kear (Citation2003).

Elasmosauridae incertae sedis

1904, Cimoliosaurus maccoyi Etheridge, p. 312.

1962, Plesiosauroidea indet. Welles, p. 47.

2002a, Elasmosauridae gen. et sp. indet. Kear, p. 679.

2003, Elasmosauridae gen. et sp. indet. Kear, p. 286.

2005c, Elasmosauridae gen. et sp. indet. Kear, p. 774.

Remarks

See previous comment on the misspelling of Cimoliasaurus by Etheridge (Citation1904). We designate Cimoliasaurus maccoyi a nomen dubium following Kear (Citation2002b, Citation2003, Citation2005c).

Elasmosauridae incertae sedis

1960, Woolungasaurus glendowerensis Persson, p. 12.

1962, Elasmosauridae indet. Welles, p. 47, 48.

2003, Elasmosauridae gen. et sp. indet. Kear, p. 288.

2004, Styxosaurus glendowerensis Sachs, 215.

2005c, Elasmosauridae indet. Kear, p. 801.

2007b, Elasmosauridae indet. Kear, p. 241.

Remarks

We designate Woolungasaurus glendowerensis a nomen dubium following Kear (Citation2003, Citation2005c, Citation2007b). However, the character state context of Elasmosauridae has developed considerably within current plesiosaurian phylogenies (e.g., O’Gorman Citation2019, Fischer et al. Citation2021, Marx et al. Citation2021, Sachs et al. Citation2021). Thus, W. glendowerensis () might yet prove diagnosable given a revision of the taxon in the future.

Eromangasaurus Kear, Citation2005c

Type species

Eromangasaurus australis (Sachs, Citation2005) Kear, Citation2007b.

Eromangasaurus australis (Sachs, Citation2005) Kear, Citation2007b

1982, Woolungasaurus cf. Woolungasaurus glendowerensis Persson, p. 647.

1993, ?Elasmosauridae gen. et sp. nov. Thulborn & Turner, p. 491.

2001, Elasmosauridae gen. et sp. indet. Kear, p. 127.

2003, Elasmosauridae gen. et sp. nov. Kear, p. 289.

2004, Tuarangisaurus sp. nov. Sachs, p. 215.

2005, Tuarangisaurus australis Sachs, p. 426.

2005c, Eromangasaurus carinognathus Kear, p. 793.

2007b, Eromangasaurus australis (Sachs) Kear, p. 245.

Holotype

QM F11050, cranium with articulated mandible () and anterior cervical vertebrae.

Type locality, unit and age

Yambore Creek near Maxwelton in central-northern Queensland, Australia. Persson (Citation1982) identified the type unit as the Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Eromangasaurus australis is consistently resolved as a basally divergent taxon within Elasmosauridae (e.g., Kubo et al. Citation2012, Otero Citation2016, Sachs et al. Citation2017, Sachs & Kear Citation2017, Serratos et al. Citation2017, Sachs et al. Citation2018, O’Gorman Citation2019, Fischer et al. Citation2021, Marx et al. Citation2021, Sachs et al. Citation2021).

TESTUDINATA Klein, Citation1760 (sensu Joyce et al. Citation2020a)

Testudinata incertae sedis

1919, Emydura cf. macquariae Chapman, p. 12, 13.

1969, Chelycarapookus arcuatus Warren, p. 23, 26.

1981, Testudines indet. Gaffney, p. 34.

1998, Eucryptodira indet. Gaffney, Kool, Brinkman, Rich & Vickers-Rich, p. 6.

2017, Testudinata indet. Joyce, p. 97.

Remarks

Warren (Citation1969) erected the family-level grouping Chelycarapookidae to monotypically accommodate Chelycarapookus arcuatus (). We, therefore, designate both C. arcuatus and Chelycarapookidae as nomina dubia following Joyce (Citation2017).

Fig. 5. Australian Mesozoic testudinatans. Testudinata incertae sedis (NMV P13160; holotype of Chelycarapookus arcuatus) carapace and plastron in A, dorsal and B, ventral views. Scale = 5 cm. C, Notochelone costata (AM F67326; holotype) partial carapace in dorsal view. Scale = 5 cm. Otwayemys cunicularius (NMV P186116; holotype) carapace and plastron in D, dorsal and E, ventral views. Scale = 5 cm. F, Cratochelone berneyi (QM F14550; holotype [part]); proximal left humerus in dorsal view. Scale = 10 cm. G, Bouliachelys suteri (SAMA P41106; referred specimen) skull in left lateral view. Scale = 5 cm. H, Spoochelys ormondea (privately owned original specimen) skull in dorsal view (LRF 450 accessioned cast). Scale = 2 cm.

Fig. 5. Australian Mesozoic testudinatans. Testudinata incertae sedis (NMV P13160; holotype of Chelycarapookus arcuatus) carapace and plastron in A, dorsal and B, ventral views. Scale = 5 cm. C, Notochelone costata (AM F67326; holotype) partial carapace in dorsal view. Scale = 5 cm. Otwayemys cunicularius (NMV P186116; holotype) carapace and plastron in D, dorsal and E, ventral views. Scale = 5 cm. F, Cratochelone berneyi (QM F14550; holotype [part]); proximal left humerus in dorsal view. Scale = 10 cm. G, Bouliachelys suteri (SAMA P41106; referred specimen) skull in left lateral view. Scale = 5 cm. H, Spoochelys ormondea (privately owned original specimen) skull in dorsal view (LRF 450 accessioned cast). Scale = 2 cm.

MESOCHELYDIA Joyce, Citation2017

Spoochelys Smith & Kear, Citation2013

Type species

Spoochelys ormondea Smith & Kear, Citation2013.

Spoochelys ormondea Smith & Kear, Citation2013

2013, Spoochelys ormondea Smith & Kear, p. 123.

Holotype

Associated cranial and postcranial elements including: AM F121643, quadrate; AM F121646, supraoccipital; AM F121579, AM F121580, and AM F121581, anterior peripherals; AM F121686 and AM F121687, anterior costal fragments; AM F121641, caudal vertebra; AM F121587, scapula; AM F121621, ulna; AM F121613, pedal phalanges.

Type locality, unit and age

T-Bone Extension opal field within the Coocoran Opal Fields, west of Lightning Ridge in northwestern New South Wales, Australia. Bell et al. (Citation2019b) constrained the fossiliferous opal-bearing lenses to the informally defined ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range has been determined as early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma) using detrital zircon analyses (Bell et al. Citation2019b).

Remarks

Joyce (Citation2017) placed Spoochelys ormondea () within the crownward testudinatan clade Parachelyida; however, we limit our classification to the more inclusive stemward clade Mesochelyida because S. ormondea retains a remnant interpterygoid vacuity (see Smith & Kear Citation2013).

MEIOLANIFORMES Sterli & de la Fuente, Citation2013

Otwayemys Gaffney, Kool, Brinkman, Rich & Vickers-Rich, Citation1998

Type species

Otwayemys cunicularius Gaffney, Kool, Brinkman, Rich & Vickers-Rich, Citation1998

Otwayemys cunicularius Gaffney, Kool, Brinkman, Rich & Vickers-Rich, Citation1998

1998, Otwayemys cunicularius Gaffney, Kool, Brinkman, Rich & Vickers-Rich, p. 3.

Holotype

NMV P186116, an incomplete carapace and plastron ().

Type locality, unit and age

Dinosaur Cove near Glenaire, west of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Sterli (Citation2015) summarized the phylogenetic placement of Otwayemys cunicularius as the only basally divergent non-meiolaniid meiolaniform currently named from Australia.

TESTUDINES Batsch, Citation1788 (sensu Joyce et al. Citation2020b)

PAN-CHELONIOIDEA Joyce, Parhan & Gauthier, 2004

PROTOSTEGIDAE Cope, Citation1872

Notochelone Lydekker, Citation1889b

Type species

Notochelone costata (Owen, Citation1882) Lydekker, Citation1889b.

Notochelone costata (Owen, Citation1882) Lydekker, Citation1889b

1882, Notochelys costata Owen, p. 178.

1889b, Notochelone costata (Owen) Lydekker, p. 325.

Holotype

AM F67326, the anterior section of the carapace and plastron () with associated pectoral girdle elements.

Type locality, unit and age

Flinders River region of central-northern Queensland, Australia. No exact locality or source bed are known but Gaffney (Citation1981, p. 5) stated that the ‘matrix and type of preservation are consistent with the same source as other presumed Notochelone; i.e., Toolebuc Limestone [= Toolebuc Formation]’. We concur, yet remains potentially attributable to Notochelone are also known from the stratigraphically overlying Allaru Mudstone (Kear Citation2003, Citation2016, Kear et al. Citation2018). The distribution of Notochelone and potentially also Notochelone costata, therefore, spans both these units within the Wilgunya Subgroup of the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Numerous specimens have been assigned to Notochelone (e.g., De Vis Citation1911, Gaffney Citation1981, Kear Citation2006b); however, the likelihood of cryptic taxa has long been recognized (Gaffney Citation1981, Molnar Citation1991; although see Myers Citation2007), with the most recent generic diagnosis representing a character state composite (see Kear Citation2003). We, therefore, restrict our nominal designation to the holotype (AM F67326) until a comprehensive assessment of all the referred material has been carried out.

Cratochelone Longman, Citation1915

Type species

Cratochelone berneyi Longman, Citation1915.

Cratochelone berneyi Longman, Citation1915

1915, Cratocehelone berneyi Longman, p. 25.

Holotype

QM F14550, associated incomplete humerus (), radius, ulna, pectoral girdle and plastron fragments.

Type locality, unit and age

Unknown locality on Sylvania Station near Hughenden in central-northern Queensland, Australia. Gaffney (Citation1981) listed the type unit as the Toolebuc Formation, although the overlying Allaru Mudstone also crops out in the Sylvania Station area (Vine & Paine Citation1974). We, therefore, limit the stratigraphical range to the Wilgunya Subgroup of the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Kear (Citation2006d) provided the most recent character state-based assessment of Cratochelone berneyi, which confirmed placement within Protostegidae. The massive body-size (‘estimated snout–tail length up to four meters’), highly vascularized limb bone articular surfaces, and prominent lateral wing on the entoplastron are especially consistent with derived protostegids (Kear Citation2006d, p. 780), and serve to distinguish C. berneyi from Notochelone costata (see Gaffney Citation1981) and other coeval taxa (see Kear & Lee Citation2006).

Bouliachelys Kear & Lee, Citation2006

Type species

Bouliachelys suteri Kear & Lee, Citation2006.

Bouliachelys suteri Kear & Lee, Citation2006

2006, Bouliachelys suteri Kear & Lee, p. 116.

Holotype

QM F31669, articulated cranium and mandible.

Type locality, unit and age

Dunraven Station near Hughenden in central-northern Queensland, Australia. Numerous additional specimens (e.g., SAMA P41106; ) have also been recovered from Canary Station in the Boulia region of western Queensland, Australia (Kear & Lee Citation2006). Both localities host widespread outcrops of the Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Although originally established on the basis of cranial remains (see Kear & Lee Citation2006), several articulated skulls and shells have since been discovered (Kear Citation2016) and are currently under study by BPK.

ARCHOSAUROMORPHA von Huene, Citation1946

CROCOPODA Ezcurra, Citation2016

Tasmaniosaurus Camp & Banks, Citation1978

Type species

Tasmaniosaurus triassicus Camp & Banks, Citation1978.

Tasmaniosaurus triassicus Camp & Banks, Citation1978

1972, Chasmatosaurus sp. Warren, p. 281.

1978, Tasmaniosaurus triassicus Camp & Banks, p. 151.

Holotype

UTGD 54655, disarticulated skull (), mandible and teeth, vertebrae, ribs, pectoral girdle and hind limb elements.

Fig. 6. Australian Mesozoic non-ornithodiran archosauromorphs. A, Tasmaniosaurus triassicus (UTGD 54655; holotype [part]) left maxilla (below) and natural mould (above). Scale = 1 cm. B, Kadimakara australiensis (QM F6676; referred specimen) partial skull and mandible in left lateral view. Scale = 2 mm. C, Kadimakara australiensis (QM F6710; holotype) partial skull in dorsal view (anterior is down). Scale = 2 mm. D, Confractosuchus sauroktonos (AODF 0890; holotype [part]) skull and mandible (in concretion) in left lateral view. Scale = 5 cm. E, Isisfordia molnari (AM F125553; holotype) partial braincase in dorsal view (anterior is up). Scale = 1 cm. F, Isisfordia selaslophensis (AM F15818; holotype) right maxilla in ventrolateral view. Scale = 1 cm. G, Isisfordia duncani (QM F36211; holotype) articulated skeleton. Scale = 10 cm.

Fig. 6. Australian Mesozoic non-ornithodiran archosauromorphs. A, Tasmaniosaurus triassicus (UTGD 54655; holotype [part]) left maxilla (below) and natural mould (above). Scale = 1 cm. B, Kadimakara australiensis (QM F6676; referred specimen) partial skull and mandible in left lateral view. Scale = 2 mm. C, Kadimakara australiensis (QM F6710; holotype) partial skull in dorsal view (anterior is down). Scale = 2 mm. D, Confractosuchus sauroktonos (AODF 0890; holotype [part]) skull and mandible (in concretion) in left lateral view. Scale = 5 cm. E, Isisfordia molnari (AM F125553; holotype) partial braincase in dorsal view (anterior is up). Scale = 1 cm. F, Isisfordia selaslophensis (AM F15818; holotype) right maxilla in ventrolateral view. Scale = 1 cm. G, Isisfordia duncani (QM F36211; holotype) articulated skeleton. Scale = 10 cm.

Type locality, unit and age

‘Upper level’ within the Crisp and Gunn’s Brick Pit, western end of Arthur Street in suburban Hobart, Tasmania, Australia; Knocklofty Formation (Tasmanian Basin) correlated with Induan to lower Olenekian (Lower Triassic) vertebrate assemblages by Ezcurra (Citation2014).

Remarks

Although initially (Banks Citation1962, Cosgriff Citation1969, Warren Citation1972) considered a close relative or possible congeneric species of Chasmatosaurus vanhoepeni Haughton, Citation1924 (= Proterosuchus fergusi Broom, Citation1903b: Ezcurra & Butler Citation2015), Camp & Banks (Citation1978) and Thulborn (Citation1986a) both recognized Tasmaniosaurus triassicus as a distinct taxon within Proterosuchidae. By contrast, Ezcurra et al. (Citation2013) found insufficient evidence to classify T. triassicus beyond Archosauromorpha (Ezcurra Citation2014), with a phylogenetic placement as the sister to Archosauriformes (Ezcurra Citation2016).

PROLACERTIDAE Parrington, Citation1935

Kadimakara Bartholomai, Citation1979

Type species

Kadimakara australiensis Bartholomai, Citation1979.

Kadimakara australiensis Bartholomai, Citation1979

1979, Kadimakara australiensis Bartholomai, p. 226.

Holotype

QM F6710, a posterior section of the cranium () with part of the right mandibular ramus.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Kadimakara australiensis () was initially described as a prolacertid by Bartholomai (Citation1979), and has even been synonymized with Prolacerta broomi Parrington, Citation1935 (Borsuk-Białynicka & Evans Citation2009, Evans & Jones Citation2010). However, recent phylogenetic analyses have reaffirmed the taxonomic distinctness of K. australiensis as a close relative of P. broomi (Ezcurra Citation2016, Spiekman Citation2018), with Prolacertidae constituting the most basal clade within Crocopoda (Spiekman et al. Citation2021).

ARCHOSAURIFORMES Gauthier, Kluge & Rowe, Citation1988

Kalisuchus Thulborn, Citation1979

Type species

Kalisuchus rewanensis Thulborn, Citation1979.

Kalisuchus rewanensis Thulborn, Citation1979

1979 Kalisuchus rewanensis Thulborn, p. 332.

Holotype

QM F8998, a left maxilla.

Type locality, unit and age

‘The Crater’ locality (QM L78) near Rolleston in central Queensland, Australia; Arcadia Formation of the Rewan Group (Bowen Basin), correlated with the lower to middle Olenekian (Lower Triassic) upper Lunatisporites pellucidus and Protohaploxypinus samoilovichii palynomorph zones (Metcalfe et al. Citation2015, Mays et al. Citation2020).

Remarks

Although initially attributed to Proterosuchidae based on a hypodigm of referred cranial and postcranial elements (Thulborn Citation1979), Ezcurra (Citation2016) restricted Kalisuchus rewanensis to the holotype maxilla (QM F8998) and placed the taxon outside Proterosuchidae within Archosauriformes.

ARCHOSAURIA Cope, Citation1870

CROCODYLOMORPHA Walker, Citation1970 (sensu Benton & Clark, Citation1988)

NEOSUCHIA Benton & Clark, Citation1988 (sensu Sereno, Larsson, Sidor & Gado, Citation2001)

Confractosuchus White, Bell, Campione, Sansalone, Brougham, Bevitt, Molnar, Cook, Wroe & Elliot, 2022.

Type species

Confractosuchus sauroktonos White, Bell, Campione, Sansalone, Brougham, Bevitt, Molnar, Cook, Wroe & Elliot, 2022.

Confractosuchus sauroktonos White, Bell, Campione, Sansalone, Brougham, Bevitt, Molnar, Cook, Wroe & Elliott, Citation2022

2022, Confractosuchus sauroktonos White, Bell, Campione, Sansalone, Brougham, Bevitt, Molnar, Cook, Wroe & Elliott, p. 284.

Holotype

AODF 0890, a skull and mandible () with articulated vertebral column, osteoderms and disarticulated fore- and hind limb elements.

Type locality, unit and age

‘Chookie Site’ (AODL 0120) on Elderslie Station near Winton in central-western Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

White et al. (Citation2022) recovered Confractosuchus sauroktonos within Eusuchia as the sister to a clade comprising Susisuchidae and Hylaeochampsidae. Ristevski et al. (Citation2023) consistently resolved C. sauroktonos as sister to Susisuchidae, albeit outside Eusuchia in some analyses. We follow their conservative approach and do not classify C. sauroktonos beyond Neosuchia.

SUSISUCHIDAE Salisbury, Frey, Martill & Buchy, Citation2003

Isisfordia Salisbury, Molnar, Frey & Willis, Citation2006

Type species

Isisfordia duncani Salisbury, Molnar, Frey & Willis, Citation2006.

Isisfordia duncani Salisbury, Molnar, Frey & Willis, Citation2006

2006, Isisfordia duncani Salisbury, Molnar, Frey & Willis, p. 2440.

Holotype

QM F36211, an articulated postcranial skeleton lacking only some forelimb elements and the anterior section of the skull and mandible ().

Type locality, unit and age

UQL-ISIS-1 locality near Isisford in central-western Queensland, Australia. Syme et al. (Citation2016) and Syme & Salisbury (Citation2018) reported that the ex situ sandstone concretion containing QM F36211 derived from the ‘lower’ portion of the Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). Tucker et al. (Citation2013) constrained the maximum depositional age of vertebrate-bearing localities in the Winton Formation at Isisford to the late Albian (Early Cretaceous, 102.2–100.5 Ma) using U-Pb isotope dating of detrital zircons, within the Phimopollenites pannosus spore-pollen zone of Helby et al. (Citation1987) and the Dioxya armata Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Isisfordia duncani is the most skeletally complete fossil crocodyliform taxon yet known from Australia. The holotype (QM F36211) and paratype specimens, including a second partial skeleton (QM F34642) and skull (QM F44330), collectively elucidate almost all aspects of its osteology. Salisbury et al. (Citation2006) identified Isisfordia duncani as the earliest-branching member of Eusuchia. Subsequent studies and new material have demonstrated a sister relationship with Susisuchus anatoceps Salisbury, Frey, Martill & Buchy, Citation2003 within Susisuchidae, which is nested either outside (Turner & Pritchard Citation2015, Montefeltro et al. Citation2019), or within a more inclusive Eusuchia (Leite & Fortier Citation2018, Martin et al. Citation2020, White et al. Citation2022).

Isisfordia selaslophensis (Etheridge, Citation1917) Hart, Citation2020.

1917, Crocodilus (?Botosaurus) selaslophensis Etheridge, p. 133.

1980c, Crocodylus (Bottosaurus) selaslophensis (Etheridge) Molnar, p. 65.

2019, Isisfordia molnari Hart, Bell, Smith & Salisbury, p. 4.

2020, Isisfordia selaslophensis (Etheridge) Hart, p. 3.

Holotype

AM F15818, a right maxillary fragment with intact dentition ().

Type locality, unit and age

Unspecified opal field in the Lightning Ridge region of northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Isisfordia selaslophensis represents the earliest recognized Mesozoic crocodyliform documented from Australia (see Etheridge Citation1917). The holotype AM F15818 was initially identified as a dentary by Etheridge (Citation1917), who bestowed the name ‘Crocodilus (?Botosaurus)’ selaslophensis. Molnar (Citation1980c) corrected this misspelling to ‘Crocodylus (Bottosaurus)’ selaslophensis, and also noted that AM F15818 bore no morphological resemblance to either of these genera. Hart et al. (Citation2019) reinterpreted AM F15818 as part of a maxilla and listed the taxon as a nomen dubium. However, Hart (Citation2020) subsequently revived the new combination Isisfordia selaslophensis with Hart et al. (Citation2021) attributing additional cranial and postcranial elements from the Wallangulla Sandstone Member to Isisfordia cf. I. selaslophensis.

Isisfordia molnari Hart, Bell, Smith & Salisbury, Citation2019

2019, Isisfordia molnari Hart, Bell, Smith & Salisbury, p. 4.

Holotype

AM F125553, a partial cranium incorporating components of the skull roof and braincase ().

Type locality, unit and age

Coocoran Opal Fields, west of Lightning Ridge in northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Hart (Citation2020) and Hart et al. (Citation2021) considered Isisfordia molnari to be a probable junior subjective synonym of Isisfordia selaslophensis. However, we follow Hart (Citation2020) in retaining I. molnari as a distinct species because there are currently no anatomically overlapping specimens with which to test this synonymy.

Confractosuchus White, Bell, Campione, Sansalone, Brougham, Bevitt, Molnar, Cook, Wroe & Elliot, 2022.

ORNITHODIRA Gauthier, Citation1986

PTEROSAURIA Kaup, Citation1834

PTERODACTYLOIDEA Plieninger, Citation1901

ORNITHOCHEIROIDEA Seeley, Citation1870 (sensu Bennett, Citation1994)

PTERANODONTOIDEA Marsh, Citation1876 (sensu Kellner, Citation2003)

LANCEODONTIA Andres, Clark & Xu, Citation2014

ORNITHOCHEIRAE Seeley, Citation1870 (sensu Andres, Clark & Xu, Citation2014)

TARGARYENDRACONIA Pêgas, Holgado and Leal, Citation2021

Aussiedraco Kellner, Rodrigues & Costa, Citation2011

Type species

Aussiedraco molnari Kellner, Rodrigues & Costa, Citation2011.

Aussiedraco molnari Kellner, Rodrigues & Costa, Citation2011

1980, aff. Ornithocheirus Molnar & Thulborn, p. 363.

2000, Anhanguera? cuvieri Unwin, Lü & Bakhurina, p. 189.

2007, aff. Lonchodectes sp. Molnar & Thulborn, p. 469.

2011, Aussiedraco molnari Kellner, Rodrigues & Costa, p. 302.

Holotype

QM F10613, the symphyseal section of a mandible ().

Fig. 7. Australian Mesozoic pterosaurs. A, Aussiedraco molnari (QM F10613; holotype) mandible in dorsal view. Scale = 1 cm. B, Mythunga camara (QM F18896; holotype) partial skull and mandible in left lateral view. Scale = 5 cm. C, Thapunngaka shawi (KK F494; holotype) mandible in left lateral view. Scale = 5 cm. D, Ferrodraco lentoni (AODF 0876; holotype [part]) partial skull and mandible in left lateral view. Scale = 5 cm.

Fig. 7. Australian Mesozoic pterosaurs. A, Aussiedraco molnari (QM F10613; holotype) mandible in dorsal view. Scale = 1 cm. B, Mythunga camara (QM F18896; holotype) partial skull and mandible in left lateral view. Scale = 5 cm. C, Thapunngaka shawi (KK F494; holotype) mandible in left lateral view. Scale = 5 cm. D, Ferrodraco lentoni (AODF 0876; holotype [part]) partial skull and mandible in left lateral view. Scale = 5 cm.

Type locality, unit and age

Hamilton River channel on Warra Station near Boulia in western Queensland, Australia; Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin), correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

QM F10613 was one of the first pterosaur fossils reported from Australia (Molnar & Thulborn Citation1980). The specimen was initially designated aff. Ornithocheirus (Molnar & Thulborn Citation1980), but subsequently transferred to Anhanguera?cuvieri (Unwin et al. Citation2000, Barrett et al. Citation2008), considered similar to Anhanguera (Kear et al. Citation2010), or reclassified as aff. Lonchodectes sp. (Molnar & Thulborn Citation2007). Kellner et al. (Citation2010) alternatively established Aussiedraco molnari with possible affinity to Anhangueridae, or Pteranodontoidea (see Kellner et al. Citation2011). Recent phylogenetic analyses have otherwise placed the taxon within Targaryendraconidae (Pêgas et al. Citation2021, Pentland et al. Citation2022b).

ANHANGUERIA Rodrigues & Kellner, Citation2013

TROPEOGNATHINAE Holgado & Pêgas, Citation2020

Mythunga Molnar & Thulborn, Citation2007

Type species

Mythunga camara Molnar & Thulborn, Citation2007.

Mythunga camara Molnar & Thulborn, Citation2007

1998, cf. Anhanguera Long, p. 155.

2007, Mythunga camara Molnar & Thulborn, p. 462.

Holotype

QM F18896, an incomplete section of the maxillary and mandibular rostra ().

Type locality, unit and age

Unspecified locality on Dunluce Station near Hughenden in central-northern Queensland, Australia; Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin), correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Mythunga camara was originally interpreted as a short-snouted archaeopterodactyloid (Molnar & Thulborn Citation2007); however, subsequent studies recognized that the anterior end of the rostrum was incomplete (Fletcher & Salisbury Citation2010, Kellner et al. Citation2010), and suggested alternative affinity with Ornithocheiridae or Anhangueridae (Kear et al. Citation2010, Pentland & Poropat Citation2023). Phylogenetic analyses have placed M. camara within Anhangueria (Pentland & Poropat Citation2019), Ornithocheirinae (Pentland et al. Citation2019), Tropeognathinae (Holgado & Pêgas Citation2020, Pentland et al. Citation2022b), and Ornithocheiridae or Tropeognathinae as a monophyletic polytomy of Australian taxa (Richards et al. Citation2021, Xu et al. Citation2022).

Ferrodraco Pentland, Poropat, Tischler, Sloan, Elliott, Elliott, Elliott & Elliott, Citation2019

Type species

Ferrodraco lentoni Pentland, Poropat, Tischler, Sloan, Elliott, Elliott, Elliott & Elliott, Citation2019.

Ferrodraco lentoni Pentland, Poropat, Tischler, Sloan, Elliott, Elliott, Elliott & Elliott, Citation2019

2019, Ferrodraco lentoni Pentland, Poropat, Tischler, Sloan, Elliott, Elliott, Elliott & Elliott, p. 2.

Holotype

AODF 0876, rostral section of the skull and dentaries () with associated teeth, cervical vertebrae, and incomplete left and right forelimbs.

Type locality, unit and age

‘Pterosaur Site’ (AODL 245) on Belmont Station northeast of Winton in central-western Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

AODF 0876 constitutes the most complete pterosaur skeleton documented from Australia to date (Pentland et al. Citation2019). Ferrodraco lentoni was originally classified within Ornithocherinae (sensu Andres et al. Citation2014) as the sister to Mythunga camara (Pentland et al. Citation2019). However, Holgado & Pêgas (Citation2020) moved these taxa to Tropeognanthinae, with subsequent phylogenies producing comparable placements (Richards et al. Citation2021, Pentland et al. Citation2022b).

Thapunngaka Richards, Stumkat & Salisbury, Citation2021

Type species

Thapunngaka shawi Richards, Stumkat & Salisbury, Citation2021.

Thapunngaka shawi Richards, Stumkat & Salisbury, Citation2021

2021, Thapunngaka shawi Richards, Stumkat & Salisbury, p. 4.

Holotype

KK F494, incomplete dentary section of the mandible ().

Type locality, unit and age

‘Free Fossil Hunting Site 1’, ∼12 km northwest of Richmond in central-northern Queensland, Australia; Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin), correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Richards et al. (Citation2021) placed Thapunngaka shawi within Tropeognanthinae to form a monophyletic polytomy with Mythunga camara and Ferrodraco lentoni.

DINOSAURIA Owen, Citation1842

SAURISCHIA Seeley, Citation1887

SAUROPODOMORPHA von Huene, Citation1932

SAUROPODA Marsh, Citation1878

GRAVISAURIA Allain & Aquesbi, Citation2008

Rhoetosaurus Longman, Citation1926

Type species

Rhoetosaurus brownei Longman, Citation1926.

Rhoetosaurus brownei Longman, Citation1926

1926, Rhoetosaurus brownei Longman, p. 185.

Holotype

QM F1659, incomplete postcranial skeleton comprising cervical and dorsal vertebrae, dorsal ribs, sacral and caudal vertebrae with haemal arches, a complete pelvic girdle and right hind limb ().

Fig. 8. Australian Mesozoic sauropod dinosaurs. A, Rhoetosaurus brownei (QM F1659; holotype [part]) right crus and pes in anterodorsal view. Scale = 20 cm. B, Austrosaurus mckillopi (QM F2316; holotype [part]) presacral vertebral series in left lateral view. Scale = 20 cm. C, Wintonotitan wattsi (QM F7292; holotype [part]) left scapula in lateral view. Scale = 20 cm. D, Savannasaurus elliottorum (AODF 0660; holotype [part]) dorsal vertebrae II–V and VII–X in left lateral view (V and IX–X mirrored). Scale bar = 20 cm. E, Diamantinasaurus matildae (AODF 0603; holotype [part]) right femur in posterior view. Scale = 20 cm. F, Diamantinasaurus matildae (AODF 0836; referred specimen [part]) braincase in posterior view. Scale = 10 cm. Image: G, Diamantinasaurus matildae (AODF 0663; referred juvenile specimen [part]) anterior dorsal vertebra in anterior view. Scale = 5 cm. H, Australotitan cooperensis (3D digital rendering of EMF 102; holotype [part]) right femur in posterior view (modified from Hocknull et al. Citation2021). Scale = 20 cm.

Fig. 8. Australian Mesozoic sauropod dinosaurs. A, Rhoetosaurus brownei (QM F1659; holotype [part]) right crus and pes in anterodorsal view. Scale = 20 cm. B, Austrosaurus mckillopi (QM F2316; holotype [part]) presacral vertebral series in left lateral view. Scale = 20 cm. C, Wintonotitan wattsi (QM F7292; holotype [part]) left scapula in lateral view. Scale = 20 cm. D, Savannasaurus elliottorum (AODF 0660; holotype [part]) dorsal vertebrae II–V and VII–X in left lateral view (V and IX–X mirrored). Scale bar = 20 cm. E, Diamantinasaurus matildae (AODF 0603; holotype [part]) right femur in posterior view. Scale = 20 cm. F, Diamantinasaurus matildae (AODF 0836; referred specimen [part]) braincase in posterior view. Scale = 10 cm. Image: G, Diamantinasaurus matildae (AODF 0663; referred juvenile specimen [part]) anterior dorsal vertebra in anterior view. Scale = 5 cm. H, Australotitan cooperensis (3D digital rendering of EMF 102; holotype [part]) right femur in posterior view (modified from Hocknull et al. Citation2021). Scale = 20 cm.

Type locality, unit and age

Recovered from a shallow gully draining into the south side of Eurombah Creek on Taloona Station (originally part of Durham Downs Station) near Roma in southwestern Queensland, Australia; Walloon Coal Measures of the Injune Creek Group (Surat Basin), constrained with a mid-Oxfordian (Late Jurassic) maximum depositional age of 162.6 ± 1.1 Ma by Todd et al. (Citation2019).

Remarks

Longman (Citation1926, Citation1927a) considered Rhoetosaurus brownei to be a close relative of Cetiosaurus oxoniensis Phillips, Citation1871, and the taxon was placed within Cetiosauridae (Huene Citation1932), or Cetiosaurinae within Camarasauridae (Steel Citation1970). McIntosh (Citation1990) otherwise re-classified R. brownei within the subfamily Shunosaurinae of Cetiosauridae. Although Upchurch (Citation1995) limited his assignment to Neosauropoda, the potential affinity of R. brownei with Shunosaurus lii Dong, Zhou & Zhang, Citation1983 (Dong Citation1988, Dong et al. Citation1989) has even led to speculation that R. brownei may have similarly possessed a tail club (Long & Buffetaut Citation2001). More recent reassessments by Nair & Salisbury (Citation2012) and Jannel et al. (Citation2019) documented additional pedal remains discovered at the type locality relocated in the 1970s (Thulborn Citation1985). Their phylogenetic analyses also resolved R. brownei within Gravisauria as the sister to Eusauropoda (Nair & Salisbury Citation2012, Jannel et al. Citation2019). Given the revised Oxfordian age (Todd et al. Citation2019), this distinguishes R. brownei as the latest-surviving non-eusauropodan sauropod.

EUSAUROPODA Upchurch, Citation1995

NEOSAUROPODA Bonaparte, Citation1986

MACRONARIA Wilson & Sereno, Citation1998

TITANOSAURIFORMES Salgado, Coria & Calvo, Citation1997

SOMPHOSPONDYLI Wilson & Sereno, Citation1998

Austrosaurus Longman, Citation1933

Type species

Austrosaurus mckillopi Longman, Citation1933

Austrosaurus mckillopi Longman, Citation1933

1933, Austrosaurus mckillopi Longman, p. 132.

Holotype

QM F2316, a posterior cervical and anterior dorsal vertebrae (); KK F1020, dorsal ribs.

Type locality, unit and age

Southwest corner of Whitewood Paddock on Clutha Station, ∼55 km northwest of Maxwelton (∼77 km northwest of Richmond) in northwestern Queensland, Australia (see Poropat et al. Citation2017). Poropat et al. (Citation2017) identified the type unit based on outcrop area as the Allaru Mudstone of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Endoceratium ludbrookae Dinocyst Zone (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Austrosaurus mckillopi was originally assigned to Cetiosauridae, but recognized as being more derived than Rhoetosaurus brownei by Longman (Citation1933). Steel (Citation1970) subsequently listed A. mckillopi as Sauropoda incertae sedis, despite the referral of additional material to Austrosaurus sp. (Coombs & Molnar Citation1981). Molnar (Citation2001b) restricted A. mckillopi to the holotype (QM F2316) and assigned the taxon to Titanosauria (see also Molnar & Salisbury Citation2005). This conclusion was supported by the phylogenetic analyses of Upchurch et al. (Citation2004), although their character scores comprised a chimaera of referred specimens (Mannion et al. Citation2013; Poropat et al. Citation2015a). Austrosaurus mckillopi has since been regarded as a nomen dubium (Hocknull et al. Citation2009, Mannion & Calvo Citation2011, Mannion et al. Citation2013, Poropat et al. Citation2015a), an indeterminate titanosauriform (Agnolin et al. Citation2010), or even a non-titanosauriform sauropod (Molnar Citation2011b). However, a reappraisal of the QM F2316 and KK F1020 type material has reasserted the validity of A. mckillopi and its placement within Somphospondyli, basal to Titanosauria (Poropat et al. Citation2017).

Wintonotitan Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

Type species

Wintonotitan wattsi Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

Wintonotitan wattsi Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

1981, Austrosaurus sp. Coombs & Molnar, p. 351.

Citation2001b, Titanosauriformes indet. Molnar, p. 143.

2005, Titanosauria indet. Molnar & Salisbury, p. 463.

2009, Wintonotitan wattsi Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, p. 15.

Holotype

QM F7292, fragmentary postcranial skeleton preserving dorsal vertebrae and ribs, caudal vertebrae, haemal arches, the left scapula (), partial forelimbs, left ilium, and left ischium.

Type locality, unit and age

‘Triangle Paddock Site’ (QM L313) on Elderslie Station near Winton in central-western Queensland, Australia; Cenomanian (Upper Cretaceous) strata within the Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This broadly correlates with the recalibrated upper Dioxya armata, Xenascus asperus and lower Diconodinum multispinum dinocyst zones (sensu Partridge Citation2006) of Foley et al. (Citation2022).

Remarks

Wintonotitan wattsi was originally described as Austrosaurus sp. (Coombs & Molnar Citation1981) and attributed to Cetiosaurinae. The material was later evaluated by Molnar (Citation2001b) and Molnar & Salisbury (Citation2005), who regarded it a titanosaurian based on comparisons of character states from Wilson (Citation2002). This was supported by the phylogeny of Upchurch et al. (Citation2004), which placed W. wattsi (as ‘Austrosaurus’) within Titanosauria. Wintonotitan wattsi has since been resolved as a basally divergent somphospondylan (Hocknull et al. Citation2009, Carballido et al. Citation2011, Carballido et al. Citation2012, D’Emic Citation2012, Carballido & Sander Citation2014, Poropat et al. Citation2015a, Poropat et al. Citation2016, Poropat et al. Citation2021a, Poropat et al. Citation2023); however, Hocknull et al. (Citation2021) alternatively classified W. wattsi within Diamantinasauria, implying the possible presence of a single sauropod clade within the Winton Formation assemblages (Poropat et al. Citation2022).

TITANOSAURIA Bonaparte & Coria, Citation1993

DIAMANTINASAURIA Poropat, Kundrát, Mannion, Upchurch, Tischler & Elliott, Citation2021a

Diamantinasaurus Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

Type species

Diamantinasaurus matildae Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

Diamantinasaurus matildae Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

2009, Diamantinasaurus matildae Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, p. 3.

Holotype

AODF 0603, an incomplete skeleton including part of the dentary, a tooth, cervical and dorsal ribs, dorsal vertebrae, the sacrum, partial pectoral girdles, nearly complete right and left forelimbs, the pelvic girdle and right hind limb lacking the pes ().

Type locality, unit and age

‘Matilda Site’ (AODL 0085) on Elderslie Station near Winton in central-western Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Hocknull et al. (Citation2009), Mannion et al. (Citation2013), and Poropat et al. (Citation2015b) classified Diamantinasaurus matildae as a derived titanosaurian within Lithostrotia. However, subsequent phylogenies have advocated a revised position closer to the base of Titanosauria (Poropat et al. Citation2016). Other studies have also consistently resolved Diamantinasauria (Mannion et al. Citation2017, González Riga et al. Citation2018, Mannion et al. Citation2019, Hocknull et al. Citation2021) as an early diverging titanosaurian lineage (Poropat et al. Citation2021a, Poropat et al. Citation2023). We expect that further preparation of AODF 0603 (Poropat et al. Citation2022) and description of new D. matildae specimens (e.g., Poropat et al. Citation2022; Rigby et al. Citation2022; Poropat et al. Citation2023; ) by SFP will refine the phylogenetic placement of this taxon.

Savannasaurus Poropat, Mannion, Upchurch, Hocknull, Kear, Kundrát, Sloan, Sinapius, Elliott & Elliott, 2016

Type species

Savannasaurus elliottorum Poropat, Mannion, Upchurch, Hocknull, Kear, Kundrát, Sloan, Sinapius, Elliott & Elliott, 2016

Savannasaurus elliottorum Poropat, Mannion, Upchurch, Hocknull, Kear, Kundrát, Sloan, Sinapius, Elliott & Elliott, 2016

2016, Savannasaurus elliottorum Poropat, Mannion, Upchurch, Hocknull, Kear, Kundrát, Sloan, Sinapius, Elliott & Elliott, p. 3.

Holotype

AODF 0660, an incomplete postcranial skeleton comprising presacral (), sacral and caudal vertebrae, a coracoid, forelimb bones, the pelvic girdle and pedal elements.

Type locality, unit and age

‘Ho-Hum Site’ (AODL 0082) on Belmont Station, northeast of Winton in central-western Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Poropat et al. (Citation2016) placed Savannasaurus elliottorum as the sister to Diamantinasaurus matildae. Consistent resolution of these taxa (Mannion et al. Citation2017, González Riga et al. Citation2018, Mannion et al. Citation2019, Hocknull et al. Citation2021) with the approximately coeval Sarmientosaurus musacchioi Martínez, Lamanna, Novas, Ridgely, Casal, Martínez, Vita & Witmer, Citation2016 from the Cenomanian–Turonian Bajo Barreal Formation of Argentina has led to the establishment of Diamantinasauria (Poropat et al. Citation2021a); this clade is topologically mobile (Carballido et al. Citation2022), but clearly represents a basally divergent titanosaurian lineage (Poropat et al. Citation2020b, Poropat et al. Citation2021a, Poropat et al. Citation2023).

Australotitan Hocknull, Wilkinson, Lawrence, Konstantinov, Mackenzie & Mackenzie, Citation2021

Type species

Australotitan cooperensis Hocknull, Wilkinson, Lawrence, Konstantinov, Mackenzie & Mackenzie, Citation2021.

Australotitan cooperensis Hocknull, Wilkinson, Lawrence, Konstantinov, Mackenzie & Mackenzie, Citation2021

2021, Australotitan cooperensis Hocknull, Wilkinson, Lawrence, Konstantinov, Mackenzie & Mackenzie, p. 38.

Holotype

EMF 102, a fragmentary skeleton including the left scapula, right and left humeri, right ulna, right and left pubes, right and left ischia and right () and left femora.

Type locality, unit and age

EML 011(a) locality on Plevna Downs Station, west of Eromanga in southwestern Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Hocknull et al. (Citation2021) resolved Australotitan cooperensis within Diamantinasauria, together with Diamantinasaurus matildae, Savannasaurus elliottorum and (in some analyses excluding selected taxa and characters) Wintonotitan wattsi. Other phylogenies have not yet evaluated this placement (e.g., Poropat et al. Citation2023), thus we retain the Hocknull et al. (Citation2021) classification herein.

THEROPODA Marsh, Citation1881

Theropoda incertae sedis

1932, Walgettosuchus woodwardi von Huene, p. 69.

Remarks

von Huene (Citation1932) erected Walgettosuchus woodwardi on the basis of an isolated caudal centrum (Smith Woodward Citation1910). This specimen (NHMUK R3717: ) cannot be diagnosed beyond Theropoda. Consequently, we designate W. woodwardi a nomen dubium following Agnolin et al. (Citation2010).

Fig. 9. Australian Mesozoic theropod and thyreophoran dinosaurs. A, Theropoda incertae sedis (NHMUK PV R3717; holotype of Walgettosuchus woodwardi) distal caudal vertebra in left lateral view. Scale = 1 cm. B, Kakuru kujani (SAMA P17926; holotype) left tibia in anterior view. Scale = 2 cm. C, Ozraptor subotaii (UWA 82469; holotype) distal left tibia in anterior view. Scale = 2 cm. D, Rapator ornitholestoides (NHMUK PV R3718; holotype) left metacarpal I in dorsal view. Scale = 1 cm. E, Timimus hermani (NMV P186303; holotype) left femur in posterior view. Scale = 5 cm. F, Australovenator wintonensis holotype left manus (AODF 0604; holotype [part], incorporating right carpal elements, right metacarpal II, and right phalanges I-2, II-3, and III-3–4 [not mirrored]) in palmomedial view. Scale = 5 cm. G, Nanantius eos (QM F12992; holotype) left tibiotarsus in posterior view. Scale = 5 mm. H, Minmi paravertebra (QM F10329; holotype [part]) left pes in plantar view. Scale = 2 cm. I, Kunbarrasaurus ieversi (QM F18101; holotype) skeleton in dorsal view. Scale = 20 cm.

Fig. 9. Australian Mesozoic theropod and thyreophoran dinosaurs. A, Theropoda incertae sedis (NHMUK PV R3717; holotype of Walgettosuchus woodwardi) distal caudal vertebra in left lateral view. Scale = 1 cm. B, Kakuru kujani (SAMA P17926; holotype) left tibia in anterior view. Scale = 2 cm. C, Ozraptor subotaii (UWA 82469; holotype) distal left tibia in anterior view. Scale = 2 cm. D, Rapator ornitholestoides (NHMUK PV R3718; holotype) left metacarpal I in dorsal view. Scale = 1 cm. E, Timimus hermani (NMV P186303; holotype) left femur in posterior view. Scale = 5 cm. F, Australovenator wintonensis holotype left manus (AODF 0604; holotype [part], incorporating right carpal elements, right metacarpal II, and right phalanges I-2, II-3, and III-3–4 [not mirrored]) in palmomedial view. Scale = 5 cm. G, Nanantius eos (QM F12992; holotype) left tibiotarsus in posterior view. Scale = 5 mm. H, Minmi paravertebra (QM F10329; holotype [part]) left pes in plantar view. Scale = 2 cm. I, Kunbarrasaurus ieversi (QM F18101; holotype) skeleton in dorsal view. Scale = 20 cm.

Kakuru Molnar & Pledge, Citation1980

Type species

Kakuru kujani Molnar & Pledge, Citation1980.

Kakuru kujani Molnar & Pledge, Citation1980

1980, Kakuru kujani Molnar & Pledge, p. 281.

Holotype

SAMA P17926, an incomplete left tibia ().

Type locality, unit and age

Unknown opal field near Andamooka, west of Lake Torrens in northeastern South Australia, Australia. The Andamooka opal-bearing strata form part of the Bulldog Shale in the Marree Subgroup of the Rolling Downs Group (Eromanga Basin); upper Aptian (Lower Cretaceous) based on bivalves (Ludbrook Citation1966) and the age-diagnostic belemnite Peratobelus (Henderson et al. Citation2000, Williamson Citation2006). This correlates with the Muderongia australis and lower Odontochitina operculata dinocyst zones (sensu Partridge Citation2006) as recognized by Krieg & Rogers (Citation1995) and Alexander & Sansome (Citation1996), and recalibrated by Foley et al. (Citation2022).

Remarks

Kakuru kujani has been interpreted as a coelurosaurian, an abelisauroid, an indeterminate averostran or tetanuran theropod (Rauhut Citation2005, Agnolin et al. Citation2010, Barrett et al. Citation2010a, Rauhut Citation2012). We consider the taxon to be valid and most feasibly referrable to Averostra (sensu Agnolin et al. Citation2010, Barrett et al. Citation2010a, Brougham et al. Citation2019).

Ozraptor Long & Molnar, Citation1998

Type species

Ozraptor subotaii Long & Molnar Citation1998.

Ozraptor subotaii Long & Molnar Citation1998

1998, Ozraptor subotaii Long & Molnar, p. 124.

Holotype

UWA 82469, an incomplete distal left tibia ().

Type locality, unit and age

Bringo Railway Cutting, ∼24 km east of Geraldton in south-central coastal Western Australia. UWA 82469 reportedly derived from the Colalura Sandstone, which represents the stratigraphically basalmost unit within the Champion Bay Group (Long & Molnar Citation1998). Mory et al. (Citation2005) listed the overlying Newmarracarra Limestone as corresponding to the lower Bajocian (Middle Jurassic) ovalis/laeviscula ammonite zones (see Hall Citation1989), although Turner et al. (Citation2009) indicated an extension of the lower Champion Bay Group into the Aalenian.

Remarks

Long & Molnar (Citation1998) interpreted Ozraptor subotaii as an indeterminate theropod, although Rauhut (Citation2005) suggested attribution to Abelisauroidea (as did Agnolin et al. Citation2010), and later as a valid theropod taxon of uncertain affinity (Rauhut Citation2012, Brougham et al. Citation2020).

COELUROSAURIA von Huene, Citation1914

MEGARAPTORIDAE Novas, Agnolin, Ezcurra, Porfiri and Canale, 2013

Rapator von Huene, Citation1932

Type species

Rapator ornitholestoides von Huene, Citation1932.

Rapator ornitholestoides von Huene, Citation1932

1932, Rapator ornitholestoides von Huene, p. 70.

Holotype

NHMUK PV R3718, a left metacarpal I ().

Type locality, unit and age

Unspecified opal field in the Lightning Ridge region of northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Rapator ornitholestoides was interpreted as a possible megaraptoran (Hocknull et al. Citation2009, Agnolin et al. Citation2010, White et al. Citation2013a), but the lack of autapomorphies has left its taxonomic validity in doubt (Agnolin et al. Citation2010, Bell et al. Citation2016).

Australovenator Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

Type species

Australovenator wintonensis Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009.

Australovenator wintonensis Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, Citation2009

2009, Australovenator wintonensis Hocknull, White, Tischler, Cook, Calleja, Sloan & Elliott, p. 25.

Holotype

AODF 0604, a fragmentary skeleton including both dentaries, ribs, and almost complete fore- () and hind limbs.

Type locality, unit and age

‘Matilda Site’ (AODL 0085) on Elderslie Station near Winton in central-western Queensland, Australia; ‘upper’ Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This correlates approximately (sensu Tucker et al. Citation2013) with the mid-Cenomanian–lower Turonian (Upper Cretaceous) Diconodinum multispinum Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

AODF 0604 is the most complete non-avian theropod dinosaur skeleton from Australia (White et al. Citation2012, White et al. Citation2013b, White et al. Citation2015b, White et al. Citation2015a, White et al. Citation2016, White et al. Citation2020). Australovenator wintonensis was initially recovered as the sister to Carcharodontosauridae (Hocknull et al. Citation2009), but Benson et al. (Citation2010a) placed the taxon within Megaraptora. Novas et al. (Citation2013) later erected Megaraptoridae to include A. wintonensis and other Gondwanan megaraptorans. Megaraptora has been nested amongst allosauroids with Carcharodontosauridae, or amongst coelurosaurians either within (see Delcourt & Grillo Citation2018, Lamanna et al. Citation2020, Naish and Cau Citation2022), or outside of Tyrannosauroidea (Porfiri et al. Citation2018, Lamanna et al. Citation2020). Australovenator wintonensis might indicate an Australian origin for Megaraptoridae (Bell et al. Citation2016, Poropat et al. Citation2019).

TYRANNOSAUROIDEA Walker, Citation1964

Timimus Rich & Vickers-Rich, Citation1994

Type species

Timimus hermani Rich & Vickers-Rich, Citation1994.

Timimus hermani Rich & Vickers-Rich, Citation1994

1994, Timimus hermani Rich & Vickers-Rich, p. 130.

Holotype

NMV P186303, a left femur ().

Type locality, unit and age

‘Dinosaur Cove East’ locality at Dinosaur Cove near Glenaire, west of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Timimus hermani was originally identified as an ornithomimosaurian by Rich & Vickers-Rich (Citation1994). Bonaparte (Citation1999) otherwise suggested a close relationship with Unenlagiinae within Dromaeosauridae, but Agnolin et al. (Citation2010) listed the taxon as a nomen dubium. Benson et al. (Citation2012) attributed T. hermani to Tyrannosauroidea, with Delcourt & Grillo (Citation2018) further classifying the taxon as an early diverging member of Pantyrannosauria.

AVIALAE Gauthier, Citation1986

ENANTIORNITHES Walker, Citation1981

Nanantius Molnar, Citation1986

Type species

Nanantius eos Molnar, Citation1986.

Nanantius eos Molnar, Citation1986

1986, Nanantius eos Molnar, p. 737.

Holotype

QM F12992, a left tibiotarsus ().

Type locality, unit and age

East bank of the Hamilton River on Warra Station, near the Hamilton Hotel ruins, ∼80 km east of Boulia in western Queensland, Australia; Toolebuc Formation of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin), correlated with the upper Albian (Lower Cretaceous) Canningopsis denticulata and lower Endoceratium ludbrookae dinocyst zones (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

Nanantius eos is the only named Mesozoic avialan taxon from Australia, and is unambiguously grouped within Enantiornithes (Molnar Citation1986, Kurochkin & Molnar Citation1997, Worthy & Nguyen Citation2020). Additional referred material (Kurochkin & Molnar Citation1997, Kear et al. Citation2003) includes the proximal end of a tibiotarsus (QM F31813) that is morphologically distinct from QM F12992 and has been identified as Nanantius sp. (Kurochkin & Molnar Citation1997).

ORNITHISCHIA Seeley, Citation1887

Ornithischia incertae sedis

2003b, Serendipaceratops arthurcclarkei Rich & Vickers-Rich, p. 2.

2010, Genasauria indet. Agnolin et al., p. 262.

Remarks

The holotype of Serendipaceratops arthurcclarkei, NMV P186385, is one of the most controversial dinosaur fossils from Australia. Although initially identified as a neoceratopsian by Rich & Vickers-Rich (Citation1994) and Rich & Vickers-Rich (Citation2003b), Agnolin et al. (Citation2010) relegated the taxon to Genasauria indet. Rich et al. (Citation2014) alternatively argued that S. arthurcclarkei was a valid member of Ceratopsia, although Rozadilla et al. (Citation2021) cited similarities with Ankylosauria. In light of these uncertainties, and the fragmentary condition of NMV P186385, we treat the taxon as Ornithischia incertae sedis until more diagnostic material is recovered.

THYREOPHORA Nopcsa, Citation1915

EURYPODA Sereno, Citation1986

ANKYLOSAURIA Osborn, Citation1923

Minmi Molnar, Citation1980b

Type species

Minmi paravertebra Molnar, Citation1980b.

Minmi paravertebra Molnar, Citation1980b

1980b, Minmi paravertebra Molnar, p. 79.

Holotype

QM F10329, a fragmentary postcranial skeleton including dorsal vertebrae, ribs, a partial right pes (), and associated dermal elements.

Type locality, unit and age

Unnamed locality ∼1 km south of Mack Gully north of Roma in southeastern Queensland, Australia; Minmi Member of the Bungil Formation in the Blythesdale Group (Surat Basin). Burger (Citation1980) considered the Minmi Member to be lower Aptian (Lower Cretaceous) based on dinoflagellates and mollusc assemblages, although the base of the Bungil Formation succession extends into the Hauterivian–Barremian (Cooling et al. Citation2021).

Remarks

Although undoubtedly an ankylosaurian (Molnar Citation1980b), Minmi paravertebra was treated as a nomen dubium by Arbour & Currie (Citation2016). Leahey et al. (Citation2015) alternatively retained M. paravertebra with most subsequent studies likewise considering the taxon valid (e.g., Bell et al. Citation2018a, Murray et al. Citation2019, Frauenfelder et al. Citation2022).

Kunbarrasaurus Leahey, Molnar, Carpenter, Witmer & Salisbury, Citation2015

Type species

Kunbarrasaurus ieversi Leahey, Molnar, Carpenter, Witmer & Salisbury, Citation2015.

Kunbarrasaurus ieversi Leahey, Molnar, Carpenter, Witmer & Salisbury, Citation2015

1996b, Minmi sp. Molnar, p. 654.

2015, Kunbarrasaurus ieversi Leahey, Molnar, Carpenter, Witmer & Salisbury, p. 7.

Holotype

QM F18101, an articulated skeleton comprising the skull, mandible and intact vertebral column lacking only the distal caudal series, a partial pectoral girdle and left forelimb, the pelvic girdle, proximal hind limbs and intact dermal armour ().

Type locality, unit and age

Locality on Marathon Station, ∼48 km east of Richmond in northwestern Queensland, Australia. Molnar (Citation1996b) identified the type unit as the Allaru Mudstone of the Wilgunya Subgroup in the Rolling Downs Group (Eromanga Basin); correlated with the upper Albian (Lower Cretaceous) Endoceratium ludbrookae Dinocyst Zone (sensu Partridge Citation2006) by Foley et al. (Citation2022).

Remarks

QM F18101 (= the ‘Marathon specimen’) is the most complete non-avian dinosaur skeleton ever recovered from Australia (Molnar Citation1996b). Although initially assigned to Minmi sp. (Molnar Citation1996b), Arbour & Currie (Citation2016) argued for generic distinction from Minmi paravertebra (QM F10329), with Leahey et al. (Citation2015) erecting Kunbarrasaurus ieversi as an early diverging ankylosaurid (Hill et al. Citation2003, Vickaryous et al. Citation2004). Kunbarrasaurus ieversi has since been placed at the base of Anklyosauria (Thompson et al. Citation2012, Arbour & Currie Citation2016, Soto-Acuña et al. Citation2021, Frauenfelder et al. Citation2022, Riguetti et al. Citation2022) within the Gondwanan ankylosaurian clade Parankylosauria; this also includes Antarctopelta oliveroi Salgado & Gasparini, Citation2006 from the upper Campanian Santa Marta Formation of James Ross Island, and Stegouros elengassen Soto-Acuña, Vargas, Kaluza, Leppe, Botelho, Palma-Liberona, Gutstein, Fernández, Ortiz, Aravena, Manríquez, Alarcón-Muñoz, Pino, Trevisan, Mansilla, Hinojosa, Muñoz-Walther & Rubilar-Rogers, 2021 from the Cenomanian–Turonian Dorotea Formation of Chile. Nevertheless, K. ieversi has been resolved within Ankylosauridae in some recent analyses (Raven et al. Citation2023).

NEORNITHISCHIA Cooper, Citation1985

CERAPODA Sereno, Citation1986

ORNITHOPODA Marsh, Citation1881

Ornithopoda incertae sedis

1932, Fulgurotherium australe von Huene, p. 69.

Remarks

von Huene (Citation1932) based Fulgurotherium australe on a fragmentary distal femur (NHMUK PV R3719; ) that was attributed to a theropod. Molnar (Citation1980a) reassigned the taxon to Ornithopoda, with additional material identified by Molnar & Galton (Citation1986), Rich & Rich (Citation1989), and Rich & Vickers-Rich (Citation1999). Agnolin et al. (Citation2010) otherwise designated the taxon a nomen dubium. We follow this conclusion in accordance with other recent studies (Bell et al. Citation2018b, Citation2019a, Citation2019b, Herne et al. Citation2018, Citation2019, Poropat et al. Citation2018, Duncan et al. Citation2021).

Fig. 10. Australian Mesozoic ornithopod dinosaurs. A, Qantassaurus intrepidus (NMV P199075; holotype) left dentary in medial view. Scale = 1 cm. B, Galleonosaurus dorisae (NMV P229196; holotype) left maxilla in lateral view. Scale = 1 cm. C, Diluvicursor pickeringi (NMV P221080; holotype) partial skeleton. Scale = 10 cm. D, Leaellynasaura amicagraphica (NMV P185991; holotype) partial skull in left lateral view. Scale = 1 cm. E, Atlascopcosaurus loadsi (NMV P166409; holotype) left maxilla in lateral view. Scale = 1 cm. F, Muttaburrasaurus langdoni (QM F6140; holotype) skull and mandible in left lateral view. Scale = 10 cm. G, Ornithopoda incertae sedis (NHMUK PV R3719; holotype of Fulgurotherium australe) right femur in distal view. Scale = 1 cm. H, Weewarrasaurus pobeni (LRF 3076; holotype) right dentary in medial view. Scale = 1 cm. Fostoria dhimbangunmal (3D digital rendering of LRF 3050; holotype) braincase in I, dorsal and J, ventral views. Scale bar = 10 cm.

Fig. 10. Australian Mesozoic ornithopod dinosaurs. A, Qantassaurus intrepidus (NMV P199075; holotype) left dentary in medial view. Scale = 1 cm. B, Galleonosaurus dorisae (NMV P229196; holotype) left maxilla in lateral view. Scale = 1 cm. C, Diluvicursor pickeringi (NMV P221080; holotype) partial skeleton. Scale = 10 cm. D, Leaellynasaura amicagraphica (NMV P185991; holotype) partial skull in left lateral view. Scale = 1 cm. E, Atlascopcosaurus loadsi (NMV P166409; holotype) left maxilla in lateral view. Scale = 1 cm. F, Muttaburrasaurus langdoni (QM F6140; holotype) skull and mandible in left lateral view. Scale = 10 cm. G, Ornithopoda incertae sedis (NHMUK PV R3719; holotype of Fulgurotherium australe) right femur in distal view. Scale = 1 cm. H, Weewarrasaurus pobeni (LRF 3076; holotype) right dentary in medial view. Scale = 1 cm. Fostoria dhimbangunmal (3D digital rendering of LRF 3050; holotype) braincase in I, dorsal and J, ventral views. Scale bar = 10 cm.

Weewarrasaurus Bell, Herne, Brougham & Smith, Citation2018b

Type species

Weewarrasaurus pobeni Bell, Herne, Brougham & Smith, Citation2018b.

Weewarrasaurus pobeni Bell, Herne, Brougham & Smith, Citation2018b

2018b, Weewarrasaurus pobeni Bell, Herne, Brougham & Smith, p. 7.

Holotype

LRF 3076, an incomplete right dentary with intact dentition ().

Type locality, unit and age

Locality on ‘Wee Warra’ Station, close to the Grawin and Glengarry opal fields, ∼40 km southwest of Lightning Ridge in northwestern New South Wales, Australia (Bell et al. Citation2018b); Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Bell et al. (Citation2018b) considered Weewarrasaurus pobeni to be a non-iguanodontian ornithopod.

ELASMARIA Calvo, Porfiri and Novas, Citation2007

Leaellynasaura Rich & Rich, Citation1989

Type species

Leaellynasaura amicagraphica Rich & Rich, Citation1989.

Leaellynasaura amicagraphica Rich & Rich, Citation1989

1989, Leaellynasaura amicagraphica Rich & Rich, p. 21.

Holotype

NMV P185991 (holotype), an incomplete skull comprising the maxilla, jugal, quadrate, quadratojugal, pterygoid and ectopterygoid (); recovered in close proximity to NMV P185990, an articulated skull roof (Rich & Rich Citation1988), NMV P185992 and NMV P185993, an articulated dorsal and caudal vertebral column with hind limb elements interpreted as belonging to a single individual (Rich & Rich Citation1989).

Type locality, unit and age

‘Slippery Rock’ locality at Dinosaur Cove near Glenaire, west of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

The association of NMV P185991, NMV P185990, NMV P185992 and NMV P185993 (Rich & Rich Citation1989) was contested by Herne & Salisbury (Citation2009) and Herne et al. (Citation2016), but refuted by Rich et al. (Citation2010) and Rich & Vickers-Rich (Citation2020). Leaellynasaura amicagraphica has been considered a non-iguanodontian ornithopod (Agnolin et al. Citation2010) or even positioned outside of Ornithopoda (Boyd Citation2015). Phylogenetic instability of the taxon based on NMV P185991 (Bell et al. Citation2018b, Madzia et al. Citation2018) led to a hypodigm placement of L. amicagraphica within the Gondwanan clade Elasmaria (Herne et al. Citation2019), incorporating other Australian mid-Cretaceous small-bodied ornithopods (see Madzia et al. Citation2018, Duncan et al. Citation2021). Alternatively, Poole (Citation2022) proposed classification of Leaellynasaura within Hypsilophodontidae; however, this analysis combined character state scores from ambiguously referred specimens (NMV P186047: Gross et al. Citation1993), along with remains pertaining to other taxa (NMV P221080, the holotype of Diluvicursor pickeringi; NMV P229196, the holotype of Galleonosaurus dorisae: Herne et al. Citation2018, Herne et al., Citation2019), and is thus rejected herein.

Atlascopcosaurus Rich & Rich, Citation1989

Type species

Atlascopcosaurus loadsi Rich & Rich, Citation1989.

Atlascopcosaurus loadsi Rich & Rich, Citation1989

1989, Atlascopcosaurus loadsi Rich & Rich, p. 31.

Holotype

NMV P166409, an isolated left maxilla ().

Type locality, unit and age

Point Lewis on Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Agnolin et al. (Citation2010) considered Atlascopcosaurus loadsi a nomen dubium; however, the name has remained in use (e.g., Madzia et al. Citation2018, Bell et al. Citation2019a, Herne et al. Citation2019, Duncan et al. Citation2021). Atlascopcosaurus loadsi is regarded as a valid genus and species of non-iguanodontian ornithopod (e.g., Norman et al. Citation2004, Agnolin et al. Citation2010, Boyd Citation2015, Bell et al. Citation2018b) with possible affinity to Elasmaria (Madzia et al. Citation2018). Duncan et al. (Citation2021) alternatively placed the taxon within a polytomy of iguanodontian and non-iguanodontian ornithopods.

Qantassaurus Rich & Vickers-Rich, Citation1999

Type species

Qantassaurus intrepidus Rich & Vickers-Rich, Citation1999.

Qantassaurus intrepidus Rich & Vickers-Rich, Citation1999

1999, Qantassaurus intrepidus Rich & Vickers-Rich, p. 174.

Holotype

NMV P199075, an isolated left dentary ().

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Norman et al. (Citation2004) noted that Qantassaurus intrepidus has similarities with the rhabdodontid Zalmoxes robustus Weishampel, Csiki-Sava & Norman, Citation2003, but the taxon is usually considered a non-iguanodontian ornithopod (Agnolin et al. Citation2010, Boyd Citation2015, Herne et al. Citation2019) within Elasmaria (Madzia et al. Citation2018), or Rhabdodontomorpha (Duncan et al. Citation2021).

Diluvicursor Herne, Tait, Hall, Weisbecker, Nair, Cleeland & Salisbury, 2018

Type species

Diluvicursor pickeringi Herne, Tait, Hall, Weisbecker, Nair, Cleeland & Salisbury, 2018.

Diluvicursor pickeringi Herne, Tait, Hall, Weisbecker, Nair, Cleeland & Salisbury, 2018

2018, Diluvicursor pickeringi Herne, Tait, Hall, Weisbecker, Nair, Cleeland & Salisbury, p. 16.

Holotype

NMV P221080, an almost complete caudal vertebral column and lower right hind limb ().

Type locality, unit and age

‘Eric the Red West’ locality to the east of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Eric the Red West Sandstone’ of the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Herne et al. (Citation2018) differentiated Diluvicursor pickeringi from postcranial remains previously assigned to Leaellynasaura amicagraphica but were unable to resolve its placement within Ornithopoda. Duncan et al. (Citation2021) alternatively posited that D. pickeringi may be a junior synonym of L. amicagraphica, A. loadsi or another taxon, but this hypothesis cannot be confirmed without further material.

Galleonosaurus Herne, Nair, Evans & Tait, Citation2019

Type species

Galleonosaurus dorisae Herne, Nair, Evans & Tait, Citation2019.

Galleonosaurus dorisae Herne, Nair, Evans & Tait, Citation2019

2019, Galleonosaurus dorisae Herne, Nair, Evans & Tait, p. 547.

Holotype

NMV P229196, an isolated left maxilla ().

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Herne et al. (Citation2019) placed Galleonosaurus dorisae within Elasmaria as a close relative of Leaellynasaura amicagraphica and possibly Diluvicursor pickeringi. Duncan et al. (Citation2021) otherwise determined an uncertain position within Ornithopoda and suggested that G. dorisae could be synonymous with Diluvicursor pickeringi, but this hypothesis cannot be confirmed without further material.

IGUANODONTIA Baur, Citation1891 (sensu Sereno, Citation1986)

Muttaburrasaurus Bartholomai & Molnar, Citation1981

Type species

Muttaburrasaurus langdoni Bartholomai & Molnar, Citation1981.

Muttaburrasaurus langdoni Bartholomai & Molnar, Citation1981

1981, Muttaburrasaurus langdoni Bartholomai & Molnar, p. 320.

Holotype

QM F6140, an incomplete skeleton comprising the skull and posterior sections of both mandibular rami (), an almost complete presacral vertebral column, and anterior caudal series, ribs, the pectoral and pelvic girdles, both forelimbs and hind limbs.

Type locality, unit and age

The ‘Rock Hole’ locality along the banks of the Thomson River on ‘Rosebery Downs’ Station, ∼4.5 km southwest of Muttaburra in central-northern Queensland, Australia (Bartholomai & Molnar Citation1981); upper Mackunda Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). This unit correlates with the uppermost Albian to lowermost Cenomanian (mid-Cretaceous) Dioxya armata Dinocyst Zone (sensu Partridge Citation2006) as recalibrated by Foley et al. (Citation2022).

Remarks

Muttaburrasaurus langdoni became the Queensland State Fossil Emblem in 2022. Bartholomai & Molnar (Citation1981) classified M. langdoni as an ‘iguanodontid’, with Norman (Citation2004) and Novas et al. (Citation2004) referring the taxon to Iguanodontia. McDonald (Citation2012) placed M. langdoni within Rhabdodontidae, although Dieudonné et al. (Citation2016, Citation2021) recovered it as a rhabdodontid sister taxon in Rhabdodontomorpha (see Bell et al. Citation2018b, Yang et al. Citation2020). By contrast, Madzia et al. (Citation2020) classified M. langdoni as a derived iguanodontian within Styracosterna (as had been proposed earlier by Agnolin et al. Citation2010). Molnar (Citation1996a) and Agnolin et al. (Citation2010) referred large-bodied ornithopod remains from the upper Albian Allaru Mudstone (Rolling Downs Group) to Muttaburrasaurus sp., which might represent a separate species (Matthew Herne [UNE] pers. comm. 2022). Poole (Citation2022), nonetheless, integrated scores from QM F6140 with the Allaru Mudstone specimen QM F14921 to place the genus Muttaburrasaurus within Rhabdodontoidea as a potential sister to Rhabdodontidae.

Fostoria Bell, Brougham, Herne, Frauenfelder & Smith, 2019

Type species

Fostoria dhimbangunmal Bell, Brougham, Herne, Frauenfelder & Smith, Citation2019a.

Fostoria dhimbangunmal Bell, Brougham, Herne, Frauenfelder & Smith, Citation2019a

2019a, Fostoria dhimbangunmal Bell, Brougham, Herne, Frauenfelder & Smith, p. 3.

Holotype

LRF 3050.A, an incomplete skull roof and braincase comprising frontals, parietals, supraoccipital, basisphenoid, the right otoccipital, and laterosphenoids, orbitosphenoids, and prootics ().

Type locality, unit and age

Sheepyard Opal Field in the Grawin Opal Fields, ∼70 km west of Lightning Ridge in northwestern New South Wales, Australia; Wallangulla Sandstone Member within the Griman Creek Formation of the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

The holotype (LRF 3050.A) of Fostoria was preserved in association with 100 fragmentary bones representing at least four individuals (Bell et al. Citation2019a). Bell et al. (Citation2019a) placed Fostoria dhimbangunmal with Muttaburrasaurus langdoni in Iguanodontia. Dieudonné et al. (Citation2021) alternatively nested these taxa within Rhabdodontomorpha.

SYNAPSIDA Osborn, Citation1903

THERAPSIDA Broom, Citation1905

THERIODONTIA Owen, Citation1876

CYNODONTIA Owen, 1861

MAMMALIA Linnaeus, Citation1758

AUSTRALOSPHENIDA Luo, Cifelli, and Kielan-Jaworowska, Citation2001

AUSKTRIBOSPHENIDAE Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1997

Ausktribosphenos Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1997

Type species

Ausktribosphenos nyktos Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1997.

Ausktribosphenos nyktos Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1997

1997, Ausktribosphenos nyktos Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, p. 1439.

Holotype

NMV P208090, an incomplete right dentary with pm6 and m1–m3 ().

Fig. 11. Australian Mesozoic synapsids. A, Steropodon galmani (AM F66763; holotype) partial right mandible in lateral view. Scale = 5 mm. Kollikodon ritchiei (AM F96602; holotype) partial right mandible in B, occlusal and C, lateral views. Scale = 5 mm. D, Stirtodon elizabethae (AM F118621; holotype) right upper premolar in labial view (modified from Rich et al. Citation2020a). Scale = 5 mm. E, Teinolophus trusleri (3D digital rendering of NMV P229408; referred specimen) left dentary in lateral view (modified from Rich et al. Citation2016). Scale = 5 mm. F, Ausktribosphenos nyktos (NMV P208090; holotype) right mandible in lateral view. Scale = 5 mm. G, Kryoparvus gerriti (NMV P210087; holotype) right mandible in lateral view (modified from Rich et al. Citation2020c). Scale = 5 mm. H, Bishops whitmorei (NMV P210075; holotype) left mandible in lateral view. Scale = 5 mm. I, Kryoryctes cadburyi (NMV P208094; holotype) right humerus in ventrolateral view. J, Corriebaatar marywaltersae (NMV P252730; referred specimen) left mandible in lateral view. Scale = 5 mm. K, Corriebaatar marywaltersae (NMV P252730; referred specimen) detail of left p4. Scale = 1 mm.

Fig. 11. Australian Mesozoic synapsids. A, Steropodon galmani (AM F66763; holotype) partial right mandible in lateral view. Scale = 5 mm. Kollikodon ritchiei (AM F96602; holotype) partial right mandible in B, occlusal and C, lateral views. Scale = 5 mm. D, Stirtodon elizabethae (AM F118621; holotype) right upper premolar in labial view (modified from Rich et al. Citation2020a). Scale = 5 mm. E, Teinolophus trusleri (3D digital rendering of NMV P229408; referred specimen) left dentary in lateral view (modified from Rich et al. Citation2016). Scale = 5 mm. F, Ausktribosphenos nyktos (NMV P208090; holotype) right mandible in lateral view. Scale = 5 mm. G, Kryoparvus gerriti (NMV P210087; holotype) right mandible in lateral view (modified from Rich et al. Citation2020c). Scale = 5 mm. H, Bishops whitmorei (NMV P210075; holotype) left mandible in lateral view. Scale = 5 mm. I, Kryoryctes cadburyi (NMV P208094; holotype) right humerus in ventrolateral view. J, Corriebaatar marywaltersae (NMV P252730; referred specimen) left mandible in lateral view. Scale = 5 mm. K, Corriebaatar marywaltersae (NMV P252730; referred specimen) detail of left p4. Scale = 1 mm.

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Ausktribosphenos nyktos has been variously interpreted as a placental (Rich et al. Citation1997, Rich et al. Citation1998), eutherian (Rich et al. Citation2001a, Rich et al. Citation2002, Woodburne Citation2003, Woodburne et al. Citation2003), or a convergent non-therian (Kielan-Jaworowska et al. Citation1998, Archer et al. Citation1999) related to monotremes (Luo et al. Citation2001, Luo et al. Citation2002, Rauhut et al. Citation2002, Kielan-Jaworowska et al. Citation2004). Flannery et al. (Citation2022a) alternatively argued against monotreme affinities, and classified A. nyktos as a Gondwanan representative of Tribosphenida (Flannery et al. Citation2022b). Nonetheless, to maintain a phylogenetically justifiable taxonomy (and consistency with the corresponding online auFNSL: Travouillon et al. Citation2021), we retain A. nyktos within Australosphenida as defined by Luo et al. (Citation2001).

Kryoparvus Rich, Trusler, Kool, Pickering, Evans, Siu, Maksimenko, Kundrat, Gostling, Morton, & Vickers-Rich, Citation2020c.

Type species

Kryoparvus gerriti Rich, Trusler, Kool, Pickering, Evans, Siu, Maksimenko, Kundrat, Gostling, Morton, & Vickers-Rich, 2020.

Kryoparvus gerriti Rich, Trusler, Kool, Pickering, Evans, Siu, Maksimenko, Kundrat, Gostling, Morton, & Vickers-Rich, 2020

2020, Kryoparvus gerriti Rich, Trusler, Kool, Pickering, Evans, Siu, Maksimenko, Kundrat, Gostling, Morton, & Vickers-Rich, p. 68.

Holotype

NMV P210087, an incomplete right dentary with m1–m3 ().

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Kryoparvus gerriti is distinguished as possibly the smallest-bodied Mesozoic mammal on record (Rich et al. Citation2020c). Rich et al. (Citation2020c) assigned the taxon to Ausktribosphenidae, which was reiterated by Flannery et al. (Citation2022b), who also posited tribosphenidan affinities. We otherwise retain K. gerriti with A. nyktos in Australophenida (sensu Travouillon et al. Citation2021) to follow the most widely accepted phylogenetic taxonomy (see Luo et al. Citation2001, Luo et al. Citation2002, Rauhut et al. Citation2002, Kielan-Jaworowska et al. Citation2004).

BISHOPIDAE Flannery, Rich, Vickers-Rich, Veatch & Helgen, Citation2022b

Bishops Rich, Flannery, Trusler, Kool, Van Klaveren, & Vickers-Rich, Citation2001b

Type species

Bishops whitmorei Rich, Flannery, Trusler, Kool, Van Klaveren, & Vickers-Rich, Citation2001b.

Bishops whitmorei Rich, Flannery, Trusler, Kool, Van Klaveren, & Vickers-Rich, Citation2001b

2001b, Bishops whitmorei Rich, Flannery, Trusler, Kool, Van Klaveren, & Vickers-Rich, p. 2.

Holotype

NMV P210075, a left dentary with pm2–pm6 and m1–m3 ().

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated rocks at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Bishops whitmorei was grouped in Ausktribosphenidae by Luo et al. (Citation2001), but elevated to a monotypic family Bishopidae within Tribosphenida by Flannery et al. (Citation2022b). Although we retain Bishopidae based on character state distinction (see Flannery et al. Citation2022b), this clade is herein referred to Australosphenida to maintain consistency with the classification schemes of Luo et al. (Citation2001) and Travouillon et al. (Citation2021). Other potential bishopids include Bishops cf. B. whitmorei (Rich et al. Citation2009a) and aff. Bishops? (Rich et al. Citation2020b) from the lower Albian Eumeralla Formation of the Otway Group, and aff. ?Bishops from the Cenomanian Mata Amarilla Formation in southern Patagonia, Argentina (Martin et al. Citation2022).

PROTOTHERIA Gill, Citation1872

MONOTREMATA Bonaparte, Citation1832 sensu Bonaparte, Citation1838

Kryoryctes Pridmore, Rich, Vickers-Rich & Gambaryan, Citation2005

Type species

Kryoryctes cadburyi Pridmore, Rich, Vickers-Rich & Gambaryan, Citation2005.

Kryoryctes cadburyi Pridmore, Rich, Vickers-Rich & Gambaryan, Citation2005.

2005, Kryoryctes cadburyi Pridmore, Rich, Vickers-Rich & Gambaryan, p. 361.

Holotype

NMV P208094, an isolated right humerus ().

Type locality, unit and age

‘Slippery Rock Pillar’ locality at Dinosaur Cove, west of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated this locality with the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Kryoryctes cadburyi has been regarded as a stem-tachyglossid (Rowe et al. Citation2008, Camens Citation2010), or a non-monotreme mammal (Musser Citation2013). The most recent assessment tentatively assigned K. cadburyi to Kollikodontidae (Flannery et al. Citation2022a), although we refrain from a definitive classification until additional fossils are discovered.

Stirtodon Rich, Flannery & Vickers-Rich, 2020

Type species

Stirtodon elizabethae Rich, Flannery & Vickers-Rich, 2020.

Stirtodon elizabethae Rich, Flannery & Vickers-Rich, 2020

2020, Stirtodon elizabethae Rich, Flannery & Vickers-Rich, p. 529.

Holotype

AM F118621, a right upper premolar ().

Type locality, unit and age

‘Vertical Bill’s claim’ on the Three-Mile Field in Lightning Ridge, northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Originally classified as a synapsid (Clemens et al. Citation2003), Rich et al. (Citation2020a) recognized affinity with Monotremata, and Flannery et al. (Citation2022a) suggested possible referral to Teinolophidae. We refrain from a definitive classification until additional fossils are discovered.

TEINOLOPHIDAE Flannery, Rich, Vickers-Rich, Ziegler, Veatch & Helgen, Citation2022a

Teinolophos Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1999

Type species

Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1999.

Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, Citation1999

1999, Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & Van Klaveren, p. 19.

Holotype

NMV P208231, an incomplete left dentary with m4.

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated rocks at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Rich et al. (Citation1999) classified Teinolophos trusleri () as a ‘eupantothere’, but subsequently referred the taxon to Monotremata (Rich et al. Citation2001c, Rich et al. Citation2016) with controversial interpretations (Bever et al. Citation2005, Martin & Luo Citation2005, Rich et al. Citation2005a, Citation2005b, Rougier et al. Citation2005). Rowe et al. (Citation2008) placed T. trusleri within Ornithorhynchidae, although Flannery et al. (Citation2022b) alternatively established the monotypic family Teinolophidae as a basally divergent monotreme lineage.

STEROPODONTIDAE Archer, Flannery, Ritchie & Molnar, Citation1985

Steropodon Archer, Flannery, Ritchie & Molnar, Citation1985

Type species

Steropodon galmani Archer, Flannery, Ritchie & Molnar, Citation1985.

Steropodon galmani Archer, Flannery, Ritchie & Molnar, Citation1985

1985, Steropodon galmani Archer, Flannery, Ritchie & Molnar, p. 364.

Holotype

AM F66763, an incomplete right dentary with m1–m3 ().

Type locality, unit and age

Unspecified opal field in the Lightning Ridge region of northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

The first Mesozoic mammal described from Australia (Archer et al. Citation1985), Steropodon galmani represents the monotypic family Steropodontidae within Monotremata (Flannery et al. Citation2022a). A possible maxilla fragment (AM 66786) referred to S. galmani by Rich et al. (Citation1989) has been reidentified as a turtle element (Smith Citation2009).

KOLLIKODONTIDAE Flannery, Archer, Rich & Jones, Citation1995

Kollikodon Flannery, Archer, Rich & Jones, Citation1995

Type species

Kollikodon ritchiei Flannery, Archer, Rich & Jones, Citation1995.

Kollikodon ritchiei Flannery, Archer, Rich & Jones, Citation1995

1995, Kollikodon ritchiei Flannery, Archer, Rich & Jones, p. 418.

Holotype

AM F96602, an incomplete right dentary with m1–m3 ().

Type locality, unit and age

Claim 30226 in Moonshine locality of the Coocoran Opal Fields, west of Lightning Ridge in northwestern New South Wales, Australia; ‘Finch Clay Facies’ of the Wallangulla Sandstone Member of the Griman Creek Formation in the Rolling Downs Group (Surat Basin). The maximum depositional age range is early to mid-Cenomanian (Late Cretaceous, 100.2–96.6 Ma: Bell et al. Citation2019b).

Remarks

Kollikodon ritchiei has been resolved as the sister taxon to Monotremata within Australosphenida (Pian et al. Citation2016), or even a mammaliaform outside Mammalia (Musser Citation2003); however, placement within Monotremata (Flannery et al. Citation1995) was reinforced by the recent assessment of Flannery et al. (Citation2022a).

Sundrius Rich, Flannery, Evans, White, Ziegler, Maguire, Poropat, Trusler & Vickers-Rich, Citation2020b

Type species

Sundrius ziegleri Rich, Flannery, Evans, White, Ziegler, Maguire, Poropat, Trusler & Vickers-Rich, Citation2020b.

Sundrius ziegleri Rich, Flannery, Evans, White, Ziegler, Maguire, Poropat, Trusler & Vickers-Rich, Citation2020b

2020b, Sundrius ziegleri Rich, Flannery, Evans, White, Ziegler, Maguire, Poropat, Trusler & Vickers-Rich, p. 78.

Holotype

NMV P252052, a broken left upper molar.

Type locality, unit and age

‘Eric the Red West’ locality to the east of Cape Otway on the southwestern coast of Victoria, Australia. Wagstaff et al. (Citation2020) correlated strata at this locality with the ‘Eric the Red West Sandstone’ of the Eumeralla Formation of the Otway Group (Otway Basin); lower Albian (Lower Cretaceous) Crybelosporites striatus Spore-pollen Zone.

Remarks

Although tentatively assigned to Monotremata (Rich et al. Citation2020b), Sundrius ziegleri was recently classified within Kollikodontidae and may be synonymous with Kryoryctes cadburyi (Flannery et al. Citation2022a).

THERIIFORMES Rowe, Citation1988

ALLOTHERIA Marsh, Citation1880

MULTITUBERCULATA Cope, Citation1884

CIMOLODONTA McKenna, Citation1975

CORRIEBAATARIDAE Rich, Vickers-Rich, Flannery, Kear, Cantrill, Komarower, Kool, Pickering, Trusler, Morton, Van Klaveren & Fitzgerald, Citation2009b

Corriebaatar Rich, Vickers-Rich, Flannery, Kear, Cantrill, Komarower, Kool, Pickering, Trusler, Morton, Van Klaveren & Fitzgerald, Citation2009b

Type species

Corriebaatar marywaltersae Rich, Vickers-Rich, Flannery, Kear, Cantrill, Komarower, Kool, Pickering, Trusler, Morton, Van Klaveren & Fitzgerald, Citation2009b.

Corriebaatar marywaltersae Rich, Vickers-Rich, Flannery, Kear, Cantrill, Komarower, Kool, Pickering, Trusler, Morton, Van Klaveren & Fitzgerald, Citation2009b

2009b, Corriebaatar marywaltersae Rich, Vickers-Rich, Flannery, Kear, Cantrill, Komarower, Kool, Pickering, Trusler, Morton, Van Klaveren & Fitzgerald, p. 2.

Holotype

NMV P216655, a left dentary fragment with pm4 and the mesial root of m1.

Type locality, unit and age

Dinosaur Dreaming Fossil Site at Flat Rocks, west of Inverloch on the Bass Coast of southern Victoria, Australia. Wagstaff et al. (Citation2020) correlated rocks at this locality with the ‘Wonthaggi Formation’ succession of the upper Strzelecki Group (Gippsland Basin); uppermost Barremian (Lower Cretaceous) Pilosisporites notensis Spore-pollen Zone ‘Group 1’ site category.

Remarks

Corriebaatar marywaltersae is the only multituberculate known from Australia (Rich et al. Citation2009b), with a second specimen (NMV P252730: ) confirming placement in Cimolodonta (Rich et al. Citation2022a).

Systematic palaeoichnology

Sauropod tracks

Oobardjidama Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

Type species

Oobardjidama foulkesi Salisbury, Romilio, Herne, Tucker & Nair, Citation2017.

Oobardjidama foulkesi Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Oobardjidama foulkesi Salisbury, Romilio, Herne, Tucker & Nair, p. 43.

Holotype

WAM 12.1.6, a polyurethane resin replica of the natural mould of a right pes (track locality reference UQL-DP45-8[rp2]: ).

Fig. 12. Australian Mesozoic dinosaur tracks. A, Oobardjidama foulkesi (UQL-DP45-8[rp2]; topotype) right pedal track. Scale bar = 20 cm. B, Megalosauropus broomensis (ambient occlusion image of WAM 66.2.51: holotype) left pedal track. Scale bar = 10 cm. C, Skartopus australis (QM F10330; holotype) right pedal track. Scale bar = 1 cm. D, Yangtzepus clarkei (UQL-DP57-1; topotype) right pedal track. Scale bar = 10 cm. E, Garbina roeorum (UQL-DP14-1[lm1]; topotype [part]) left manal track. Scale bar = 10 cm. F, Luluichnus mueckei (UQL-DP45-6[lp1, lm1]; topotype) coupled left manual and pedal tracks. Scale bar = 10 cm. G, Wintonopus latomorum (QM F10319; holotype) right pedal track. Scale bar = 5 cm. H, Wintonopus middletonae (UQL-DP14-7; topotype) ?left pedal track. Scale bar = 10 cm. I, Walmadanyichnus hunteri (UQL-DP11-5; topotype) right pedal track. Scale bar = 10 cm. A–B, D–F and H–I from Salisbury et al. (Citation2017).

Fig. 12. Australian Mesozoic dinosaur tracks. A, Oobardjidama foulkesi (UQL-DP45-8[rp2]; topotype) right pedal track. Scale bar = 20 cm. B, Megalosauropus broomensis (ambient occlusion image of WAM 66.2.51: holotype) left pedal track. Scale bar = 10 cm. C, Skartopus australis (QM F10330; holotype) right pedal track. Scale bar = 1 cm. D, Yangtzepus clarkei (UQL-DP57-1; topotype) right pedal track. Scale bar = 10 cm. E, Garbina roeorum (UQL-DP14-1[lm1]; topotype [part]) left manal track. Scale bar = 10 cm. F, Luluichnus mueckei (UQL-DP45-6[lp1, lm1]; topotype) coupled left manual and pedal tracks. Scale bar = 10 cm. G, Wintonopus latomorum (QM F10319; holotype) right pedal track. Scale bar = 5 cm. H, Wintonopus middletonae (UQL-DP14-7; topotype) ?left pedal track. Scale bar = 10 cm. I, Walmadanyichnus hunteri (UQL-DP11-5; topotype) right pedal track. Scale bar = 10 cm. A–B, D–F and H–I from Salisbury et al. (Citation2017).

Type locality, unit and age

Topotype trackway locality UQL-DP45 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Sauropod tracks and trackways are a common component of the Broome Sandstone dinosaur ichnofossil assemblage (Thulborn et al. Citation1994, Thulborn Citation2012, Salisbury et al. Citation2017). Although as many as seven types of sauropod tracks have been identified (Salisbury et al. Citation2017; Salisbury & Romilio Citation2019), most are too poorly defined to warrant formal naming. The only exception, Oobardjidama foulkesi, was attributed to either a diplodocoid or a non-lithostrotian titanosauriform trackmaker by Salisbury et al. (Citation2017).

Theropod tracks

Megalosauropus Colbert & Merrilees, Citation1967

Type species

Megalosauropus broomensis Colbert & Merrilees, Citation1967.

Megalosauropus broomensis Colbert & Merrilees, Citation1967

1967, Megalosauropus broomensis Colbert & Merrilees, p. 22.

Holotype

WAM 66.2.51, epoxy resin, fibreglass and plaster positive from the natural mould of a left pes (; track locality reference G5-6: Colbert & Merrilees Citation1967).

Type locality, unit and age

Topotype trackway locality at Minyirr (= Gantheaume Point) ∼7.5 km west of Broome on the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Numerous tridactyl theropod tracks have been referred to the ichnogenus Megalosauropus (see Lockley et al. Citation1996, Citation2000); however, the type ichnospecies Megalosauropus broomensis is restricted to the Broome Sandstone (Lockley et al. Citation1996, Citation2000, Thulborn Citation2001). Colbert & Merrilees (Citation1967, p. 25) attributed these tracks to ‘a large carnosaur…possibly Megalosaurus itself’. Salisbury et al. (Citation2017) alternatively compared the gracile proportions of the pedal impressions to body fossils of the megaraptorid Australovenator wintonensis. Although the G5-6 topotype trackway of M. broomensis was lost to erosion in the early 1990s, numerous other examples of M. broomensis occur at Minyirr, elsewhere around Broome, and along the Yanijarri-Lurujarri coastline ∼50 km further north (Salisbury et al. Citation2017). Romilio & Godfrey (Citation2022) recently assigned multiple theropod tracks to an indeterminate ichnospecies of Megalosauropus from the lower Albian Eumeralla Formation at Wattle Bay, west of Cape Otway in Victoria, Australia.

Skartopus Thulborn & Wade, Citation1984

Type species

Skartopus australis Thulborn & Wade, Citation1984.

Skartopus australis Thulborn & Wade, Citation1984.

1979, Coelurosaur tracks Thulborn & Wade, p. 275.

1984, Skartopus australis Thulborn & Wade, p. 427.

2013, Wintonopus latomorum (Thulborn & Wade) Romilio, Tucker & Salisbury, p. 114.

2017, Skartopus australis (Thulborn & Wade) Thulborn, p. 1.

Holotype

QM F10330, a left pedal impression ().

Type locality, unit and age

Dinosaur Stampede National Monument at Lark Quarry Conservation Park, ∼120 km southwest of Winton in Central West Queensland, Australia; middle Cenomanian–upper Turonian (Upper Cretaceous) strata within the Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). Tucker et al. (Citation2013) constrained the maximum depositional age of track-bearing localities in the Winton Formation at Lark Quarry Conservation Park to the middle Cenomanian–early Turonian (Late Cretaceous; 94.5–92 Ma using U-Pb isotope dating of detrital zircons); this correlates with the Appendiscisporites distocarinatus spore-pollen zone of Helby et al. (Citation1987), and the recalibrated upper Dioxya armata, Xenascus asperus and lower Diconodinum multispinum dinocyst zones (sensu Partridge Citation2006) of Foley et al. (Citation2022).

Remarks

Thulborn & Wade (Citation1984) assigned 34 trackways from the Dinosaur Stampede National Monument assemblage to Skartopus australis. These were characterized by small, symmetrical tridactyl footprints with long, narrow digital impressions attributed to small-bodied non-avian theropods (Thulborn & Wade Citation1979, Citation1984). Romilio et al. (Citation2013) critiqued that the individual track dimensions and trackway parameters, including pace, stride, and pace angulation listed by Thulborn & Wade (Citation1979, Citation1984, Citation1989) are difficult to confirm. Certainly, Thulborn & Wade (Citation1984, p. 511, pl. 14, fig. B) photographed only three tracks in a continuous S. australis trackway, whereas Wade (Citation1989, p. 77, ) illustrated ‘[p]rints 7–12 of 24’ from a trackway that Romilio et al. (Citation2013, p. 107, ) identified as ‘LQ-2’ and attributed to the ornithopod ichnotaxon Wintonopus latomrorum Thulborn & Wade, Citation1984. This was then used as a basis for rendering S. australis a junior synonym of W. latomrorum, with the recognition that several tracks assigned to S. australis by Thulborn & Wade (Citation1984) formed parts of trackways incorporating examples of W. latomorum (see Romilio et al. Citation2013, pp. 107–108, ), and that even the holotype of S. australis (QM F10330) integrated internal track outlines consistent with W. latomorum (Romilio et al. Citation2013, p. 110, ). Comparable examples of deeply impressed ‘Skartopus-like’ trackways incorporating shallower W. latomorum tracks have also been described from the mid-Valanginian to mid-Barremian Broome Sandstone of the Walmadany area on the Dampier Pensinsula of Western Australia (e.g., UQL-DP5-1: see Salisbury et al. Citation2017, p. 78, fig. 39). Nonetheless, Thulborn (Citation2017) and Poropat et al. (Citation2021b) rejected this synonymization, and instead documented additional examples of S. australis (AODF 0904.T1) from the Snake Creek Tracksite in the ‘upper’ Winton Formation, northwest of Winton in Queensland, Australia (see Poropat et al. Citation2021b, p. 39, fig. 20). In light of these unresolved competing interpretations, we provisionally retain S. australis as a valid ichnotaxon until further studies clarify the ambiguous track associations.

Yangtzepus Young, Citation1960

Type species

Yangtzepus yipingensis Young, Citation1960.

Yangtzepus clarkei Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Yangtzepus clarkei Salisbury, Romilio, Herne, Tucker & Nair, p. 34.

Holotype

WAM 12.1.1, a polyurethane resin replica of a right pedal impression (track locality reference UQL-DP57-1: ).

Type locality, unit and age

Topotype trackway locality UQL-DP57-1 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Yangtzepus clarkei tridactyl tracks are longer than wide with distinctive ‘inflated’ digital impressions (especially that of digit III) that closely resemble the probable theropod ichnotype species Yangtzepus yipingensis (see Xing et al. Citation2009b, Salisbury et al. Citation2017).

Kayentapus Welles, Citation1971

Type species

Kayentapus hopii Welles, Citation1971.

Kayentapus ichnosp. indet.

1971, Changpeipus bartholomaii Haubold, p. 79.

1997, cf. Eubrontes Thulborn, p. 42.

2009, cf. Eubrontes Turner et al. p. 63.

2021, Kayentapus ichnosp. Indet. Romilio, Jannel & Salisbury, p. 2138.

Remarks

Haubold (Citation1971) assigned two tridactyl theropod tracks to Changpeipus bartholomaii Haubold, Citation1971 from the mid-Oxfordian Walloon Coal Measures of the Injune Creek Group at Rosewood, ∼62 km west of Brisbane in Queensland, Australia. However, Haubold (Citation1971) failed to formally designate a holotype or describe these traces in detail, which renders the ichnotaxon a nomen nudum (Xing et al. Citation2009a). Thulborn (Citation1997) and Turner et al. (Citation2009) also noted similarities to the ubiquitous theropod ichnotaxon Eubrontes Hitchcock, Citation1845, and Romilio et al. (Citation2021a) otherwise assigned all definitive theropod tracks from the Walloon Coal Measures to the ichnogenus Kayentapus Welles, Citation1971.

Thyreophoran tracks

Garbina Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

Type species

Garbina roeorum Salisbury, Romilio, Herne, Tucker & Nair, Citation2017.

Garbina roeorum Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Garbina roeorum Salisbury, Romilio, Herne, Tucker & Nair, p. 88.

Holotype

WAM 12.1.19 and WAM 12.1.20, polyurethane resin replicas from associated natural moulds of a left manus and a left pes, respectively (track locality references UQL-DP14-1[lm1] [], UQL-DP14-1[lp1]).

Type locality, unit and age

Topotype trackway locality UQL-DP14-1 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

The Broome Sandstone has long been famous for producing thyreophoran footprints that might be attributable to stegosaurians (e.g., Long Citation1992a, Thulborn et al. Citation1994). Salisbury et al. (Citation2017) accordingly identified Garbina roeorum as a probable stegosaurian ichnotaxon based on the co-occurrence of tetradactyl manual and tridactyl pedal impressions within multiple trackways. Some tracks and trackways from the Yanijarri-Lurujarri section of the Dampier Peninsula indicate that the predominantly quadrupedal G. roeorum trackmaker was also capable of bipedal locomotion over short distances (Salisbury et al. Citation2017, p. 93, fig. 49). Romilio et al. (Citation2021a) subsequently described a cf. Garbina manual track (see Hill et al. Citation1966) from the mid-Oxfordian Walloon Coal Measures of Rosewood in southeastern Queensland, which now constitutes the stratigraphically oldest evidence of stegosaurians in Australia (Salisbury et al. Citation2017). In the absence of any body fossils, tracks assigned to Garbina and similar ichnotaxa are the only evidence of stegosaurian ornithischians in Australia.

Luluichnus Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

Type species

Luluichnus mueckei Salisbury, Romilio, Herne, Tucker & Nair, Citation2017.

Luluichnus mueckei Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Luluichnus mueckei Salisbury, Romilio, Herne, Tucker & Nair, p. 99.

Holotype

WAM 15.12.701, polyurethane resin replicas from associated natural moulds of a left manus and a left pes within a trackway (track locality reference UQL-DP45-6[lp1,lm1]; ); NMV P230370-B, a plaster replica of the left pedal impression (UQL-DP45-6[lp1]).

Type locality, unit and age

Topotype trackway locality UQL-DP45-6 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Luluichnus mueckei tracks were mentioned in popular accounts by Long (Citation1990, Citation1993, Citation1998), who noted similarities with stegosaurian footprints. Salisbury et al. (Citation2017) concurred with a formal description of L. muecki, which differs from Garbina roeorum in lacking clear digit impressions on the manual tracks and possessing pointed digit impressions on the pedal tracks. The manual and pedal tracks are also of comparable size, unlike those of G. roeorum, in which the pedal tracks are considerably larger than the manual tracks.

Ornithopod tracks

Wintonopus Thulborn & Wade, Citation1984 sensu Salisbury et al. Citation2017

Type species

Wintonopus latomorum Thulborn & Wade, Citation1984.

Wintonopus latomorum Thulborn & Wade, Citation1984

1984, Wintonopus latomorum Thulborn & Wade, p. 421.

Holotype

QM F10319, a natural mould of the right pes ().

Type locality, unit and age

Dinosaur Stampede National Monument at Lark Quarry Conservation Park, ∼120 km southwest of Winton in Central West Queensland, Australia; middle Cenomanian–upper Turonian (Upper Cretaceous) strata within the Winton Formation of the Manuka Subgroup in the Rolling Downs Group (Eromanga Basin). Tucker et al. (Citation2013) constrained the maximum depositional age of track-bearing localities in the Winton Formation at Lark Quarry Conservation Park to the middle Cenomanian–early Turonian (Late Cretaceous, 94.5–92 Ma) using U-Pb isotope dating of detrital zircons, within the Appendiscisporites distocarinatus spore-pollen zone of Helby et al. (Citation1987) and the recalibrated upper Dioxya armata, Xenascus asperus and lower Diconodinum multispinum dinocyst zones (sensu Partridge Citation2006) of Foley et al. (Citation2022).

Remarks

Wintonopus latomorum is typified by tridactyl tracks with short broad digits that suggest attribution to a small-bodied ornithopod trackmaker (Thulborn & Wade Citation1979, Citation1984, Romilio et al. Citation2013, Salisbury et al. Citation2017). Romilio et al. (Citation2013) considered Skartopus australis to be a junior synonym of Wintonopus, although this is not universally accepted (see Thulborn Citation2017, Poropat et al. Citation2021b). Small ornithopod tracks from the lower Albian Eumeralla Formation at Wattle Bay, west of Cape Otway in Victoria, Australia have also been referred to cf. Wintonopus by Romilio & Godfrey (Citation2022).

Wintonopus middletonae Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Wintonopus middletonae Salisbury, Romilio, Herne, Tucker & Nair, p. 80.

Holotype

WAM 12.1.15, polyurethane resin replica from the natural mould of a ?left pes (track locality reference UQL-DP14-7; ).

Type locality, unit and age

Topotype trackway locality UQL-DP14-7 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Salisbury et al. (Citation2017) attributed Wintonopus middletonae to a medium-sized, bipedal ornithopod trackmaker. Similar to tracks assigned to Wintonopus latomorum, those referred to W. middletonae lack a metatarsodigital pad impression, suggesting a sub-unguligrade pedal posture (Salisbury et al. Citation2017). Wintonopus middletonae can be distinguished from W. latomorum by its proportionately broader digit impressions, typically with rounded distal ends, and a symmetrically bilobed proximal margin on the pedal impression (Salisbury et al. Citation2017). In addition to the Yanijarri-Lurujarri topotype area, examples of W. middletonae tracks have also been recorded from Broome Sandstone exposures around Broome (Salisbury & Romilio, Citation2019).

Walmadanyichnus Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

Type species

Walmadanyichnus hunteri Salisbury, Romilio, Herne, Tucker & Nair, Citation2017.

Walmadanyichnus hunteri Salisbury, Romilio, Herne, Tucker & Nair, Citation2017

2017, Walmadanyichnus hunter Salisbury, Romilio, Herne, Tucker & Nair, p. 83.

Holotype

WAM 12.1.16, polyurethane resin replica from the natural mould of a right pes (track locality reference UQL-DP11-5; ).

Type locality, unit and age

Topotype trackway locality DP11-5 in the intertidal zone of the Yanijarri-Lurujarri section of the Dampier Peninsula in the west Kimberly region of Western Australia, Australia (see Salisbury et al. Citation2017); Broome Sandstone depositional cycle within the Canning Basin, correlated with the mid-Valanginian to mid-Barremian (Lower Cretaceous) uppermost Egmontodinium torynum to mid-Muderongia australis dinocyst zones and upper Ruffordiaspora australiensis to upper Foraminisporis wonthaggiensis spore-pollen zones (Smith et al. Citation2013).

Remarks

Walmadanyichnus hunteri is known from numerous large (up to ∼800 mm in maximum proximodistal length) tridactyl pedal tracks and partial trackways; there are no associated manus tracks, suggesting a bipedal ornithopod of compatible size to large non-hadrosauroid iguanodontians (Salisbury et al. Citation2017). Walmadanyichnus hunteri differs from the ichnospecies of Wintonopus in displaying: (1) continuous metatarsodigital pad and digit IV impressions; (2) a sub-circular peripheral outline; and (3) sub-equally sized, oval digit impressions (Salisbury et al. Citation2017).

Dicynodont tracks

Dicynodontipus Rühle von Lilienstern, Citation1944

Type species

Dicynodontipus hildburghausensis Rühle von Lilienstern, Citation1944.

Dicynodontipus bellambiensis Retallack, Citation1996

1915, Ichnium gampsodactylum Harper, p. 153.

1996, Dicynodontipus bellambiensis Retallack, p. 311.

Holotype

NSWGS F13639, a trackway sequence of six alternating manus and pes impressions.

Type locality, unit and age

Roof siltstone/shale unit from above the Bulli coal seam in the Bellambi Colliery workings in the northern suburbs of Wollongong, New South Wales, Australia. Retallack (Citation1996) originally reported that the track horizon occurred within the Coal Cliff Sandstone of the Clifton Subgroup in the Narrabeen Group (Sydney Basin). However, McLoughlin et al. (Citation2021) redefined this thin shale-dominated host unit as equivalent to the Frazer Beach Member of the Moon Island Beach Formation (Newcastle Coal Measures). McLoughlin et al. (Citation2021) correlated the Bulli seam with the uppermost Changhsingian (Upper Permian) Dulhuntyispora parvithola Zone, and the overlying Frazer Beach Member to the palynomorph ‘dead zone’ of Vajda et al. (Citation2020), which marks the end-Permian mass extinction interval (see also Mays & McLoughlin Citation2022). McLoughlin et al. (Citation2021) also determined a lower U-Pb zircon age bracket of 252.1 ± 0.06 to 251.51 ± 0.14 Ma.

Remarks

Retallack (Citation1996) attributed Dicynodontipus bellambiensis to a ‘Lystrosaurus-like’ dicynodont trackmaker based on scale impressions, claw marks and the pentadactyl manus/pes.

Reniformichnus Krummeck & Bordy, Citation2018

Type species

Reniformichnus katikatii Krummeck & Bordy, Citation2018.

Reniformichnus australis McLoughlin, Mays, Vajda, Bocking, Frank & Fielding, Citation2020

2020, Reniformichnus australis McLoughlin, Mays, Vajda, Bocking, Frank & Fielding, p. 345.

Holotype

NRM X9101a, a burrow infilling; NRM X9101b, a thin-section through the burrow trace structure.

Type locality, unit and age

Coastal rock exposures at Frazer Beach and Wybung Head in the Munmorah State Conservation Area at Wyong north of Sydney Basin, New South Wales, Australia; Frazer Beach Member of the Moon Island Beach Formation (Newcastle Coal Measures), uppermost Changhsingian (Upper Permian) palynomorph ‘dead zone’ of Vajda et al. (Citation2020), representing the end-Permian mass extinction interval (252.1 ± 0.06 to 251.51 ± 0.14 Ma: McLoughlin et al. Citation2021).

Remarks

McLoughlin et al. (Citation2020) attributed these burrow traces to cynodonts, indicating the survival of fossorial tetrapods across the end-Permian mass extinction.

Acknowledgments

We thank the Executive Committee of AAP for instigating compilation of the Australian Fossil National Species List (https://www.australasianpalaeontologists.org/databases). Laurie Beirne (QM), Matthew Cawood (UNE), Alex Cook (AAOD), Gary Granitch (QM), Matthew Herne (UNE), Scott Hocknull (QM), Lucy Leahey (UQ), Donna Miller (QM), Steve Morton (Monash University), Anthony O’Toole (UQ), Adele Pentland (Curtin University and AAOD), Thomas Rich (NMV), Anthony Romilio (UQ), Robert Smith (LR), Peter Trusler (Melbourne), Patricia Vickers-Rich (Monash University), Izzy von Lichten (University of Tasmania) and Peter Waddington (QM) generously contributed images and information. We would also like to thank two anonymous reviewers, and especially the Alcheringa handling editor Stephen McLoughlin (NRM), for their feedback on this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

SFP acknowledges funding from an Australian Research Council-Laureate Fellowship grant [FL210100103, awarded to Prof. Kliti Grice (Curtin University)]. BPK acknowledges funding from a Swedish Research Council Project Grant [2020-3423]. LJH is funded under an Australian Government Research Training Program (RTP) Scholarship.

References

  • Agnolin, F.L., Ezcurra, M.D., Pais, D.F. & Salisbury, S.W., 2010. A reappraisal of the Cretaceous non-avian dinosaur faunas from Australia and New Zealand: evidence for their Gondwanan affinities. Journal of Systematic Palaeontology 8, 257–300.
  • Akerman, K. & Rozefelds, A., 2011. Message in a bottle – a tale of two Triassic temnospondyl (labyrinthodont) femora from Tasmania. Papers and Proceedings of the Royal Society of Tasmania 145, 5–7. https://doi.org/10.26749/rstpp.145.5
  • Alexander, E.M. & Sansome, A., 1996. Lithostratigraphy and environments of deposition. In The Petroleum Geology of South Australia. Vol. 2. Eromanga Basin, South Australia. Alexander, E.M. & Hibbert, J.E., eds, Department of Mines and Energy Report Book, Adelaide, 49–86.
  • Allain, R. & Aquesbi, N., 2008. Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco. Geodiversitas 30, 345–417.
  • Andres, B., Clark, J. & Xu, X., 2014. The earliest pterodactyloid and the origin of the group. Current Biology 24, 1011–1016.
  • Andrews, C.W., 1922. Description of a new plesiosaur from the Weald Clay of Berwick (Sussex). Quarterly Journal of the Geological Society of London 78, 285–298.
  • Anonymous, 1952a. Dinosaur footprints. Queensland Government Mineral Journal 53, 949–950.
  • Anonymous, 1959. Ancient monarch of the seas. Natural History 68, 22–23.
  • Anonymous. 1952b. Dinosaur’s footprints in Downs colliery. Queensland Government Mining Journal 53, 107.
  • Arbour, V.M. & Currie, P.J., 2016. Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. Journal of Systematic Palaeontology 14, 385–444.
  • Archer, M., Arena, R., Bassarova, M., Black, K., Brammall, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S.J., Kear, B., Krikmann, A., Mackness, B., Muirhead, J., Musser, A., Myers, T., Pledge, N., Wang, Y. & Wroe, S., 1999. The evolutionary history and diversity of Australian mammals. Australian Mammalogy 21, 1–45.
  • Archer, M., Flannery, T.F., Ritchie, A. & Molnar, R.E., 1985. First Mesozoic mammal from Australia – an Early Cretaceous monotreme. Nature 318, 363–366.
  • Arkhangelsky, M.S., 1998. On the ichthyosaurian genus Platypterygius. Paleontological Journal 32, 611–615.
  • Averianov, A.O., Martin, T., Skutchas, P.P., Rezvyi, A.S. & Bakirov, A.A., 2008. Amphibians from the Middle Jurassic Balabansai Svita in the Fergana Depression, Kyrgyzstan (Central Asia). Palaeontology 51, 471–485.
  • Bamberry, W.J. & Herbert, C., 1996. Fluvial successions of the Late Permian to Triassic rocks of the northern Sydney Basin. Australasian Sedimentologists Group Field Guide Series 9, 1–58.
  • Banks, M.R., 1962. The fossil reptile from Crisp and Gunn’s Quarry, West Hobart. University of Tasmania Geology Department Publications 102, 1–4.
  • Barrett, P.M., Benson, R.B.J., Rich, T.H. & Vickers-Rich, P., 2011. First spinosaurid dinosaur from Australia and the cosmopolitanism of Cretaceous dinosaur faunas. Biology Letters 7, 933–936.
  • Barrett, P.M., Butler, R.J., Edwards, N.P. & Milner, A.R., 2008. Pterosaur distribution in time and space: an atlas. Zitteliana B 28, 61–107.
  • Barrett, P.M., Kear, B.P. & Benson, R.B.J., 2010a. Opalized archosaur remains from the Bulldog Shale (Aptian: Lower Cretaceous) of South Australia. Alcheringa 34, 293–301.
  • Barrett, P.M., Rich, T.H., Vickers-Rich, P., Tumanova, T.A., Inglis, M., Pickering, D., Kool, L. & Kear, B.P., 2010b. Ankylosaurian dinosaur remains from the Lower Cretaceous of southeastern Australia. Alcheringa 34, 205–217.
  • Bartholomai, A., 1966a. Fossil footprints in Queensland. Australian Natural History 15, 147–150.
  • Bartholomai, A., 1966b. The discovery of plesiosaurian remains in freshwater sediments in Queensland. Australian Journal of Science 28, 437–438.
  • Bartholomai, A., 1979. New lizard-like reptiles from the Early Triassic of Queensland. Alcheringa 3, 225–234.
  • Bartholomai, A. & Howie, A., 1970. Vertebrate fauna from the lower Trias of Australia. Nature 225, 1063.
  • Bartholomai, A. & Molnar, R.E., 1981. Muttaburrasaurus, a new iguanodontid (Ornithischia: Ornithopoda) dinosaur from the Lower Cretaceous of Queensland. Memoirs of the Queensland Museum 20, 319–349.
  • Batsch, A.J.G.C., 1788. Versuch einer Anleitung, zur Kenntniß und Geschichte der Thiere und Mineralien, für akademische Vorlesungen entworfen, und mit den nöthigsten Abbildungen versehen. Erster Theil. Allgemeine Geschichte der Natur; besondre der Säugthiere, Vögel, Amphibien und Fische. Akademische Buchhandlung, Jena, 528 pp.
  • Baur, G., 1891. Remarks on the reptiles generally called Dinosauria. American Naturalist 25, 434–454.
  • Bell, P.R., Brougham, T., Herne, M.C., Frauenfelder, T. & Smith, E.T., 2019a. Fostoria dhimbangunmal gen. et sp. nov., a new iguanodontian (Dinosauria, Ornithopoda) from the mid-Cretaceous of Lightning Ridge, New South Wales, Australia. Journal of Vertebrate Paleontology 39, e1564757.
  • Bell, P.R., Burns, M.E. & Smith, E.T., 2018a. A probable ankylosaurian (Dinosauria, Thyreophora) from the Early Cretaceous of New South Wales, Australia. Alcheringa 42, 120–124.
  • Bell, P.R., Cau, A., Fanti, F. & Smith, E., 2016. A large-clawed theropod (Dinosauria: Tetanurae) from the Lower Cretaceous of Australia and the Gondwanan origin of megaraptorid theropods. Gondwana Research 36, 473–487.
  • Bell, P.R., Fanti, F., Hart, L.J., Milan, L.A., Craven, S.J., Brougham, T. & Smith, E., 2019b. Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 514, 655–671.
  • Bell, P.R., Herne, M.C., Brougham, T. & Smith, E.T., 2018b. Ornithopod diversity in the Griman Creek Formation (Cenomanian), New South Wales, Australia. PeerJ 6, e6008.
  • Bennett, S.C., 1994. Taxonomy and systematics of the Late Cretaceous pterosaur Pteranodon (Pterosauria, Pterodactyloidea). Occasional Papers of the Natural History Museum, University of Kansas 169, 1–70.
  • Bennett, S.C. & Long, J.A., 1991. A large pterodactyloid pterosaur from the Late Cretaceous (late Maastrichtian) of Western Australia. Records of the Western Australian Museum 15, 435–443.
  • Benson, R.B.J., Barrett, P.M., Rich, T.H. & Vickers-Rich, P., 2010b. A southern tyrant reptile. Science 327, 1613.
  • Benson, R.B.J., Barrett, P.M., Rich, T.H., Vickers-Rich, P., Pickering, D. & Holland, T., 2010c. Response to comment on “A southern tyrant reptile”. Science 329, 1013–d.
  • Benson, R.B.J., Carrano, M.T. & Brusatte, S.L., 2010a. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97, 71–78.
  • Benson, R.B.J. & Druckenmiller, P.S., 2014. Faunal turnover of marine tetrapods during the Jurassic–Cretaceous transition. Biological Reviews 89, 1–23.
  • Benson, R.B.J., Fitzgerald, E.M.G., Rich, T.H. & Vickers-Rich, P., 2013b. Large freshwater plesiosaurian from the Cretaceous of Australia. Alcheringa 37, 456–461.
  • Benson, R.B.J., Ketchum, H.F., Naish, D. & Turner, L.E., 2013a. A new leptocleidid (Sauropterygia, Plesiosauria) from the Vectis Formation (Early Barremian–early Aptian; Early Cretaceous) of the Isle of Wight and the evolution of Leptocleididae, a controversial clade. Journal of Systematic Palaeontology 11, 233–250.
  • Benson, R.B.J., Rich, T.H., Vickers-Rich, P. & Hall, M., 2012. Theropod fauna from southern Australia indicates high polar diversity and climate-driven dinosaur provinciality. PLoS One 7, e37122.
  • Benton, M.J., 1985. Classification and phylogeny of the diapsid reptiles. Zoological Journal of the Linnean Society 84, 97–164.
  • Benton, M.J. & Clark, J.M., 1988. Archosaur phylogeny and the relationships of the Crocodylia. In The Phylogeny and Classification of Tetrapods, Volume 1; Amphibians, Reptiles, Birds. Benton, M.J., ed., Clarendon Press, Oxford, 289–332.
  • Bever, G.S., Rowe, T., Ekdale, E.G., Macrini, T.E., Colbert, M.W. & Balanoff, A.M., 2005. Comment on “independent origins of middle ear bones in monotremes and therians” (I). Science 309, 1492a.
  • Blainville, H.M.D.d., 1835. Description de quelques espéces de reptiles de la Californie, précédée de l’analyse d’un systeme général d’erpétologie et d’amphibiologie. Nouvelles Annales du Muséum d’Histoire Naturelle 4, 233–296.
  • Bonaparte, C.L., 1832. Saggio d'una distribuzione metodica degli animali vertebrati a sangue freddo. Presso Antonio Boulzaler, Rome, Italy, 144 pp.
  • Bonaparte, C.L., 1838. Synopsis vertebratorums systematis. Nuovi Annali delle Scienze Naturali 2, 105–133.
  • Bonaparte, J.F., 1986. The early radiation and phylogenetic relationships of the Jurassic sauropod dinosaurs, based on vertebral anatomy. In The Beginning of the Age of Dinosaurs. Padian, K., ed., Cambridge University Press, Cambridge, 247–258.
  • Bonaparte, J.F., 1999. Tetrapod faunas from South America and India: a palaeobiogeographic interpretation. Proceedings of the Indian National Science Association 65A, 427–437.
  • Bonaparte, J.F. & Coria, R.A., 1993. Un nuevo y gigantesco saurópodo titanosaurio de la Formación Rio Limay (Albiano-Cenomaniano) de la Provincia del Neuquén, Argentina. Ameghiniana 30, 271–282.
  • Borsuk-Białynicka, M. & Evans, S.E., 2009. A long-necked archosauromorph from the Early Triassic of Poland. Palaeontologia Polonica 65, 203–234.
  • Botha, J. & Smith, R.M.H., 2020. Biostratigraphy of the Lystrosaurus declivis Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South African Journal of Geology 123, 207–216.
  • Boyd, C.A., 2015. The systematic relationships and biogeographic history of ornithischian dinosaurs. PeerJ 3, e1523.
  • Broili, F., 1907. Ein neuer Ichthyosaurus aus der norddeutschen Kreide. Palaeontographica 54, 139–162.
  • Broom, R., 1903a. On a new stegocephalian (Batrachosuchus browni) from the Karroo Beds of Ariwal (i.e., Aliwal) North, South Africa. Geological Magazine 10, 499–501.
  • Broom, R., 1903b. On a new reptile (Proterosuchus fergusi) from the Karroo beds of Tarkastad, South Africa. Annals of the South African Museum 4, 159–164.
  • Broom, R., 1905. On the use of the term Anomodontia. Records of the Albany Museum 1, 266–269.
  • Broom, R., 1915. On the Triassic Stegocephalians, Brachyops, Bothriceps, and Lydekkerina, gen. nov. Proceedings of the Zoological Society of London 85, 363–368.
  • Brougham​, T., Smith, E.T. & Bell, P.R., 2017. Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia. PeerJ 5, e3256.
  • Brougham, T., Smith, E.T. & Bell, P.R., 2019. New theropod (Tetanurae: Avetheropoda) material from the 'mid'-Cretaceous Griman Greek[sic Creek] Formation at Lightning Ridge, New South Wales, Australia. Royal Society Open Science 6, 180826.
  • Brougham, T., Smith, E.T. & Bell, P.R., 2020. Noasaurids are a component of the Australian 'mid'-Cretaceous theropod fauna. Scientific Reports 10, 1428.
  • Buffetaut, E., Raksaskulwong, L., Suteethorn, V. & Tong, H., 1994b. First post-Triassic temnospondyl amphibians from the Shan-Thai block: intercentra from the Jurassic of peninsular Thailand. Geological Magazine 131, 837–839.
  • Buffetaut, E., Tong, H. & Suteethorn, V., 1994a. First post-Triassic labyrinthodont amphibian in South East Asia: a temnospondyl intercentrum from the Jurassic of Thailand. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1994, 385–390.
  • Burger, D., 1980. Palynology of the Lower Cretaceous in the Surat Basin. Bureau of the Mineral Resources. Geology and Geophysics Bulletin 189, 1–106.
  • Calvo, J.O., Porfiri, J.D. & Novas, F.E., 2007. Discovery of a new ornithopod dinosaur from the Portezuelo Formation (Upper Cretaceous), Neuquén, Patagonia, Argentina. Arquivos do Museu Nacional, Rio de Janeiro 65, 471–483.
  • Camens, A.B., 2010. Were early Tertiary monotremes really all aquatic? Inferring paleobiology and phylogeny from a depauperate fossil record. Proceedings of the National Academy of Sciences 107, E12.
  • Camp, C.L. & Banks, M.R., 1978. A proterosuchian reptile from the Early Triassic of Tasmania. Alcheringa 2, 143–158.
  • Carballido, J.L., Otero, A., Mannion, P.D., Salgado, L. & Pérez Moreno, A., 2022. Titanosauria: a critical reappraisal of its systematics and the relevance of the South American record. In South American Sauropodomorph Dinosaurs: Record, Diversity and Evolution. Otero, A., Carballido, J.L. & Pol, D., eds, Springer Cham, Switzerland, 269–298.
  • Carballido, J.L., Pol, D., Cerda, I. & Salgado, L., 2011. The osteology of Chubutisaurus insignis Del Corro, 1975 (Dinosauria: Neosauropoda) from the ‘Middle’ Cretaceous of Central Patagonia, Argentina. Journal of Vertebrate Paleontology 31, 93–110.
  • Carballido, J.L., Salgado, L., Pol, D., Canudo, J.I. & Garrido, A., 2012. A new basal rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin; evolution and biogeography of the group. Historical Biology 24, 631–654.
  • Carballido, J.L. & Sander, P.M., 2014. Postcranial axial skeleton of Europasaurus holgeri, (Dinosauria, Sauropoda) from the Upper Jurassic of Germany: implications for sauropod ontogeny and phylogenetic relationships of basal Macronaria. Journal of Systematic Palaeontology 12, 335–387.
  • Carter, J., 1846. Notice of the jaws of an Ichthyosaurus from the Chalk in the neighbourhood of Cambridge. In Report of the Fifteenth Meeting of the British Association for the Advancement of Science; held at Cambridge in June 1845. John Murray, London, 60.
  • Cayla, N., 2020. Dinosaur geotourism: a world-wide growing tourism niche. In The Geotourism Industry in the 21st Century. Nekouie Sadry, B., ed., Apple Academic Press, Palm Bay, 449–472.
  • Chapman, F., 1914. Australasian Fossils: A Student’s Manual of Palaeontology. George Robertson and Company, Melbourne, Australia, 341 pp.
  • Chapman, F., 1919. New or little-known Victorian fossils in the National Museum. Part XXIV, On a fossil tortoise in ironstone from Carapook, near Casterton. Proceedings of the Royal Society of Victoria 32, 11–13.
  • Choo, B., 1999. Cretaceous ichthyosaurs from Western Australia. Records of the Western Australian Museum, Supplement 57, 207–218.
  • Cisneros Martínez, J.C., 2006. A taxonomic revision of the genus Procolophon and the phylogenetic relationships of procolophonoid reptiles. Ph.D. thesis. University of the Witwatersrand, Johannesburg, South Africa, 178 pp. (unpublished)
  • Clemens, W.A., Wilson, G.P. & Molnar, R.E., 2003. An enigmatic (?synapsid) tooth from the Early Cretaceous of New South Wales, Australia. Journal of Vertebrate Paleontology 23, 232–237.
  • Close, R.A., Vickers-Rich, P., Trusler, P., Chiappe, L.M., O’Connor, J., Rich, T.H., Kool, L. & Komarower, P., 2009. Earliest Gondwanan bird from the Cretaceous of southeastern Australia. Journal of Vertebrate Paleontology 29, 616–619.
  • Colbert, E.H., 1967. A new interpretation of Austropelor, a supposed Jurassic labyrinthodont amphibian from Queensland. Memoirs of the Queensland Museum 15, 35–41.
  • Colbert, E.H. & Kitching, J.W., 1975. The Triassic reptile Procolophon in Antarctica. American Museum Novitates 2566, 1–23.
  • Colbert, E.H. & Merrilees, D., 1967. Cretaceous dinosaur footprints from Western Australia. Journal of the Royal Society of Western Australia 50, 21–25.
  • Colliver, F.S., 1956. Triassic footprints in Queensland. Queensland Naturalist 15, 78–79.
  • Conrad, J.L., 2008. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310, 1–182.
  • Cook, A.G., Saini, N. & Hocknull, S.A., 2010. Dinosaur footprints from the Lower Jurassic of Mount Morgan, Queensland. Memoirs of the Queensland Museum 55, 135–146.
  • Cooling, J.J., Crowley, J.L., McKellar, J.L., Esterle, J.S., Nicoll, R.S. & Bianchi, V., 2021. Stratigraphic constraints on the Lower Cretaceous Orallo Formation, southeastern Queensland: U–Pb dating of bentonite and palynostratigraphy of associated strata. Australian Journal of Earth Sciences 68, 343–354.
  • Coombs, W.P., Jr. & Molnar, R.E., 1981. Sauropoda (Reptilia, Saurischia) from the Cretaceous of Queensland. Memoirs of the Queensland Museum 20, 351–373.
  • Cooper, M.R., 1985. A revision of the ornithischian dinosaur Kangnasaurus coetzeei Haughton, with a classification of the Ornithischia. Annals of the South African Museum 95, 281–317.
  • Cope, E.D., 1870. Synopsis of the extinct Batrachia, Reptilia and Aves of North America. Transactions of the American Philosophical Society 14, 1–252.
  • Cope, E.D., 1872. On the geology and palaeontology of the Cretaceous strata of Kansas. Preliminary Report of the United States Geological Survey of Montana and Portions of Adjacent Territories, 318–349.
  • Cope, E.D., 1884. The Tertiary Marsupialia. American Naturalist 18, 686–697.
  • Cortés, D., Maxwell, E.E. & Larsson, H.C.E., 2021. Re-appearance of hypercarnivore ichthyosaurs in the Cretaceous with differentiated dentition: revision of ‘Platypterygius’ sachicarum (Reptilia: Ichthyosauria, Ophthalmosauridae) from Colombia. Journal of Systematic Palaeontology 19, 969–1002.
  • Cosgriff, J.W., 1965. A new genus of Temnospondyli from the Triassic of Western Australia. Journal of the Royal Society of Western Australia 48, 65–90.
  • Cosgriff, J.W., 1967. Triassic labyrinthodonts from New South Wales. Australian and New Zealand Association for the Advancement of Science, Geology Section 1967, K4–K5.
  • Cosgriff, J.W., 1969. Blinasaurus, a brachyopid genus from Western Australia and New South Wales. Journal of the Royal Society of Western Australia 52, 65–88.
  • Cosgriff, J.W., 1972. Parotosaurus wadei, a new capitosaurid from New South Wales. Journal of Paleontology 46, 545–555.
  • Cosgriff, J.W., 1973. Notobrachyops picketii, a brachyopid from the Ashfield Shale, New South Wales. Journal of Paleontology 47, 1094–1101.
  • Cosgriff, J.W., 1974. Lower Triassic Temnospondyli of Tasmania. Geological Society of America Special Paper 149, 1–131.
  • Cosgriff, J.W. & DeFauw, S.L., 1987. A capitosaurid labyrinthodont from the lower Scythian of Tasmania. Alcheringa 11, 21–41.
  • Cosgriff, J.W. & Garbutt, N.K., 1972. Erythrobatrachus noonkanbahensis, a trematosaurid species from the Blina Shale. Journal of the Royal Society of Western Australia 55, 5–18.
  • Cosgriff, J.W. & Zawiskie, J.M., 1979. A new species of the Rhytidosteidae from the Lystrosaurus zone and a review of the Rhytidosteoidea. Palaeontologia Africana 22, 1–27.
  • Cruickshank, A.R.I., Fordyce, R.E. & Long, J.A., 1999. Recent developments in Australasian sauropterygian palaeontology (Reptilia: Sauropterygia). In Papers in Vertebrate Palaeontology. Records of the Western Australian Museum, Supplement 57. Baynes, A. & Long, J.A., eds, 201–205.
  • Cruickshank, A.R.I. & Long, J.A., 1997. A new species of pliosaurid reptile from the Early Cretaceous Birdrong Sandstone of Western Australia. Records of the Western Australian Museum 18, 263–276.
  • Currie, P.J., Vickers-Rich, P. & Rich, T.H., 1996. Possible oviraptorosaur (Theropoda, Dinosauria) specimens from the Early Cretaceous Otway Group of Dinosaur Cove, Australia. Alcheringa 20, 73–79.
  • D’Emic, M.D., 2012. Early evolution of titanosauriform sauropod dinosaurs. Zoological Journal of the Linnean Society 166, 624–671.
  • Damiani, R., 2004. Cranial anatomy and relationships of Microposaurus casei, a temnospondyl from the Middle Triassic of South Africa. Journal of Vertebrate Paleontology 24, 533–541.
  • Damiani, R.J., 1999. Giant temnospondyl amphibians from the Early to Middle Triassic Narrabeen Group of the Sydney Basin, New South Wales, Australia. Alcheringa 23, 87–109.
  • Damiani, R.J., 2000. Early Triassic mastodonsaurids (Temnospondyli, Stereospondyli) from Western Australia, with remarks on mastodonsauroid palaeobiogeography. Alcheringa 24, 299–305.
  • Damiani, R.J., 2001. A systematic revision and phylogenetic analysis of Triassic mastodonsaurids (Temnospondyli, Stereospondyli). Zoological Journal of the Linnean Society 133, 379–482.
  • Damiani, R.J. & Hancox, P.J., 2003. New mastodonsaurid temnospondyls from the Cynognathus Assemblage Zone (Upper Beaufort Group; Karoo Basin) of South Africa. Journal of Vertebrate Paleontology 23, 54–66.
  • Damiani, R.J. & Warren, A., 1996. A new look at members of the superfamily Brachyopoidea (Amphibia, Temnospondyli) from the Early Triassic of Queensland and a preliminary analysis of brachyopoid relationships. Alcheringa 20, 277–300.
  • Damiani, R.J. & Warren, A., 1997. Re-interpretation of Parotosuchus wadei Cosgriff, a capitosaurid from the Triassic Narrabeen Group at Gosford, New South Wales, with comments on its growth stage. Alcheringa 21, 281–289.
  • David, T.W.E., 1932. Explanatory notes to accompany a new geological map of the Commonwealth of Australia. The Commonwealth Council for Scientific and Industrial Research, Sydney, 177 pp.
  • Day, R.W., 1969. The Lower Cretaceous of the Great Artesian Basin. In Stratigraphy and Palaeontology. Essays in Honour of Dorothy Hill. Campbell, K.S.W., ed., Australian National University Press, Canberra, 140–173.
  • Day, R.W., Whitaker, W.G., Murray, C.G., Wilson, I.H. & Grimes, K.G., 1983. Queensland Geology; A companion volume to the 1:2 500000 scale geological map (1975). Geological Survey of Queensland Publication 383, 1–194.
  • De Vis, C.W., 1911. On some Mesozoic fossils. Annals of the Queensland Museum 10, 1–11.
  • Delcourt, R. & Grillo, O.N., 2018. Tyrannosauroids from the Southern Hemisphere: implications for biogeography, evolution, and taxonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 511, 379–387.
  • Dias-Da-Silva, S. & Marsicano, C., 2011. Phylogenetic reappraisal of Rhytidosteidae (Stereospondyli: Trematosauria), temnospondyl amphibians from the Permian and Triassic. Journal of Systematic Paleontology 9, 305–325.
  • Dias-Da-Silva, S., Sengupta, D.P., Cabreira, S.F. & Da Silva, L.R., 2012. The presence of Compsocerops (Brachyopoidea: Chigutisauridae) (Late Triassic) in southern Brazil with comments on chigutisaurid palaeobiogeography. Palaeontology 55, 163–172.
  • Dickins, J.M., McTavish, R.A. & Balme, B.E., 1961. The Beagle Ridge Bore. Australasian Oil & Gas Journal 7, 20–21.
  • Dieudonné, P.-E., Cruzado-Caballero, P., Godefroit, P. & Tortosa, T., 2021. A new phylogeny of cerapodan dinosaurs. Historical Biology 33, 2335–2355.
  • Dieudonné, P.-E., Tortosa, T., Torcida Fernández-Baldor, F., Canudo, J.I. & Díaz-Martínez, I., 2016. An unexpected early rhabdodontid from Europe (Lower Cretaceous of Salas de los Infantes, Burgos Province, Spain) and a re-examination of basal iguanodontian relationships. PLoS One 11, e0156251.
  • Dong, Z., 1985. A Middle Jurassic labyrinthodont (Sinobrachyops placenticephalus gen. et sp. nov.) from Dashanpu, Zigong, Sichuan Province. Vertebrata PalAsiatica 23, 301–306.
  • Dong, Z., 1988. [Bony tail clubs: defensive weapons in sauropod dinosaurs] (in Chinese). Hua Shi 55, 1–31.
  • Dong, Z., Peng, G. & Huang, D., 1989. The discovery of the bony tail club of sauropods. Vertebrata PalAsiatica 27, 219–224.
  • Dong, Z., Zhou, S. & Zhang, Z., 1983. Dinosaurs from the Jurassic of Sichuan. Palaeontologia Sinica (Series C)162, 1–145.
  • Druckenmiller, P.S. & Russell, A.P., 2008. A phylogeny of Plesiosauria (Sauropterygia) and its bearing on the systematic status of Leptocleidus Andrews, 1922. Zootaxa 1863, 1–120.
  • Duncan, R.J., Evans, A.R., Vickers-Rich, P., Rich, T.H. & Poropat, S.F., 2021. Ornithopod jaws from the Lower Cretaceous Eumeralla Formation, Victoria, Australia, and their implications for polar neornithischian dinosaur diversity. Journal of Vertebrate Paleontology 41, e1946551.
  • Eltink, E., Schoch, R.R. & Langer, M.C., 2019. Interrelationships, palaeobiogeography and early evolution of Stereospondylomorpha (Tetrapoda: Temnospondyli). Journal of Iberian Geology 45, 251–267.
  • Etheridge, R., Junr., 1888. On additional evidence of the genus Ichthyosaurus in the Mesozoic rocks (“Rolling Downs Formation”) of north-eastern Australia. Proceedings of the Linnean Society of New South Wales 3 (Series 2), 405–409.
  • Etheridge, R., Junr., 1897. An Australian sauropterygian (Cimoliosaurus), converted into precious opal. Records of the Australian Museum 3, 19–29.
  • Etheridge, R., Junr., 1904. A second sauropterygian converted into opal, from the Upper Cretaceous of White Cliffs, New South Wales. With indications of ichthyopterygians at the same locality. Records of the Australian Museum 5, 306–316.
  • Etheridge, R., Junr., 1917. Reptilian notes: Megalania prisca, Owen, and Notiosaurus dentatus, Owen; Lacertilian dermal armour; Opalized remains from Lightning Ridge. Proceedings of the Royal Society of Victoria 29, 127–133.
  • Evans, S.E., 2003. At the feet of the dinosaurs: the early history and radiation of lizards. Biological Reviews 78, 513–551.
  • Evans, S.E. & Jones, M.E.H., 2010. The origin, early history and diversification of lepidosauromorph reptiles. In New Aspects of Mesozoic Biodiversity, Lecture Notes in Earth Sciences, 132. Bandyopadhyay, S., ed., Springer-Verlag, Berlin/Heidelberg, 27–44.
  • Exon N.F., 1976. Geology of the Surat Basin in Queensland. Bureau of Mineral Resources, Geology and Geophysics Bulletin 166, 1–160.
  • Ezcurra, M.D., 2014. The osteology of the basal archosauromorph Tasmaniosaurus triassicus from the Lower Triassic of Tasmania, Australia. PLoS One 9, e86864.
  • Ezcurra, M.D., 2016. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4, e1778.
  • Ezcurra, M.D., Bandyopadhyay, S. & Sen, K., 2022. A new faunistic component of the Lower Triassic Panchet Formation of India increases the continental non-archosauromorph neodiapsid record in the aftermath of the end-Permian mass extinction. Journal of Paleontology 96, 428–438.
  • Ezcurra, M.D. & Butler, R.J., 2015. Taxonomy of the proterosuchid archosauriforms (Diapsida: Archosauromorpha) from the earliest Triassic of South Africa, and implications for the early archosauriform radiation. Palaeontology 58, 141–170.
  • Ezcurra, M.D., Butler, R.J. & Gower, D.J., 2013. ‘Proterosuchia’: the origin and early history of Archosauriformes. In Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin; Geological Society Special Publication, 379. Nesbitt, S.J., Desojo, J.B. & Irmis, R.B., eds, Geological Society, London, 9–33.
  • Farman, R.M. & Bell, P.R., 2020. Australia's earliest tetrapod swimming traces from the Hawkesbury Sandstone (Middle Triassic) of the Sydney Basin. Journal of Paleontology 94, 966–978.
  • Feistmantel, O., 1890. Geological and palaeontological relations of the coal and plant-bearing beds of Palaeozoic and Mesozoic age in eastern Australia and Tasmania with special reference to the fossil flora. Memoirs of the Geological Survey of New South Wales, Palaeontology 3, 1–183.
  • Fischer, V., 2016. Taxonomy of Platypterygius campylodon and the diversity of the last ichthyosaurs. PeerJ 4, e2604.
  • Fischer, V., Arkhangelsky, M.S., Naish, D., Stenshin, I.M., Uspensky, G.N. & Godefroit, P., 2014. Simbirskiasaurus and Pervushovisaurus reassessed: implications for the taxonomy and cranial osteology of Cretaceous platypterygiine ichthyosaurs. Zoological Journal of the Linnean Society 171, 822–841.
  • Fischer, V., Zverkov, N.G., Arkhangelsky, M.S., Stenshin, I.M., Blagovetshensky, I.V. & Uspensky, G.N., 2021. A new elasmosaurid plesiosaurian from the Early Cretaceous of Russia marks an early attempt at neck elongation. Zoological Journal of the Linnean Society 192, 1167–1194.
  • Fitzgerald, E.M.G., Carrano, M.T., Holland, T., Wagstaff, B.E., Pickering, D., Rich, T.H. & Vickers-Rich, P., 2012. First ceratosaurian dinosaur from Australia. Naturwissenschaften 99, 397–405.
  • Flannery, T.F., Archer, M., Rich, T.H. & Jones, R., 1995. A new family of monotremes from the Cretaceous of Australia. Nature 377, 418–420.
  • Flannery, T.F. & Rich, T.H., 1981. Dinosaur digging in Victoria. Australian Natural History 20, 195–198.
  • Flannery, T.F., Rich, T.H., Vickers-Rich, P., Veatch, E.G. & Helgen, K.M., 2022b. The Gondwanan origin of Tribosphenida (Mammalia). Alcheringa 46, 277–290.
  • Flannery, T.F., Rich, T.H., Vickers-Rich, P., Ziegler, T., Veatch, E.G. & Helgen, K.M., 2022a. A review of monotreme (Monotremata) evolution. Alcheringa 46, 3–20.
  • Fletcher, H.O., 1948. Footprints in the sands of time. Australian Museum Magazine 9, 247–251.
  • Fletcher, H.O., 1959. A giant marine reptile from the Cretaceous rocks of Queensland. Australian Museum Magazine 13, 47–49.
  • Fletcher, T.L. & Salisbury, S.W., 2010. New pterosaur fossils from the Early Cretaceous (Albian) of Queensland, Australia. Journal of Vertebrate Paleontology 30, 1747–1759.
  • Foley, E.K., Roberts, E.M., Henderson, R.A., Todd, C.N., Knutsen, E.M. & Spandler, C., 2022. Middle Jurassic–Lower Cretaceous stratigraphy of the northern Great Australian Superbasin: insights from maximum depositional age constraints from the U–Pb detrital zircon record. Australian Journal of Earth Sciences 69, 929–952.
  • Fortuny, J., Gastou, S., Escuillié, F., Ranivoharimanana, L. & Steyer, J.-S., 2018. A new extreme longirostrine temnospondyl from the Triassic of Madagascar: phylogenetic and palaeobiogeographical implications for trematosaurids. Journal of Systematic Palaeontology 16, 675–688.
  • Fraas, E., 1889. Die Labyrinthodonten der Schwäbischen Trias. Palaeontographica 36, 1–158.
  • Frauenfelder, T.G., Bell, P.R., Brougham, T., Bevitt, J.J., Bicknell, R.D.C., Kear, B.P., Wroe, S. & Campione, N.E., 2022. New ankylosaurian cranial remains from the Lower Cretaceous (upper Albian) Toolebuc Formation of Queensland, Australia. Frontiers in Earth Science 10, 803505.
  • Frauenfelder, T.G., Campione, N.E., Smith, E.T. & Bell, P.R., 2021. Diversity and palaeoecology of Australia's southern‐most sauropods, Griman Creek Formation (Cenomanian), New South Wales, Australia. Lethaia 54, 354–367.
  • Gaffney, E.S., 1981. A review of the fossil turtles of Australia. American Museum Novitates 2720, 1–38.
  • Gaffney, E.S., Kool, L., Brinkman, D.B., Rich, T.H. & Vickers-Rich, P., 1998. Otwayemys, a new cryptodiran turtle from the Early Cretaceous of Australia. American Museum Novitates 3233, 1–28.
  • Galton, P.M., 1990. Basal Sauropodomorpha – Prosauropoda. In The Dinosauria. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 320–344.
  • Gauthier, J., 1986. Saurischian monophyly and the origin of birds. In The Origin of Birds and the Evolution of Flight. Padian, K., ed., Memoirs of the California Academy of Sciences, USA, 8, 1–55.
  • Gauthier, J., Kluge, A.G. & Rowe, T., 1988. Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209.
  • Gee, B.M., 2022. The disadvantage of derivation: conserved systematic flaws in primary data have repeatedly biased the phylogenetic inference of Temnospondyli (Tetrapoda, Amphibia). bioRxiv, 2022.06.22.49672.
  • Gee, B.M., Makovicky, P.J. & Sidor, C.A., 2022. Upside down: ‘Cryobatrachus’ and the lydekkerinid record from Antarctica. Journal of Paleontology 96, 658–683.
  • Gee, B.M. & Sidor, C.A., 2022. Cold capitosaurs and polar plagiosaurs: new temnospondyl records from the upper Fremouw Formation (Middle Triassic) of Antarctica. Journal of Vertebrate Paleontology 41, e1998086.
  • Gill E.D., 1965. Palaeontology of Victoria. Victorian Year Book 79, 1–24.
  • Gill, T., 1872. Arrangement of the families of mammals and synaptical table of the characters of the subdivisions of mammals. Smithsonian Miscellaneous Collections 11, 1–98.
  • Godthelp, H. 2006. Mammal remains from the Toolebuc Formation at Hazel Ck, N.W. Queensland. In Abstracts from CAVEPS 2005. Alcheringa 30(S1), 443.
  • González Riga, B.J., Mannion, P.D., Poropat, S.F., Ortíz David, L.D. & Coria, J.P., 2018. Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships. Zoological Journal of the Linnean Society 184, 136–181.
  • Grant-Mackie, J.A., Aita, Y., Balme, B.E., Campbell, H.J., Challinor, A.B., MacFarlan, D.A.B., Molnar, R.E., Stevens, G.R. & Thulborn, R.A., 2000. Jurassic palaeobiogeography of Australasia. Memoirs of the Association of Australian Palaeontologists 23, 311–353.
  • Gross, J.D., Rich, T.H. & Vickers-Rich, P., 1993. Dinosaur bone infection: chronic osteomyelitis in a hypsilophodontid dinosaur in Early Cretaceous, polar Australia. National Geographic Research and Exploration 9, 286–293.
  • Haig, D.W., Martin, S.K., Mory, A.J., McLoughlin, S., Backhouse, J., Berrell, R.W., Kear, B.P., Hall, R., Foster, C.B., Shi, G.R. & Bevan, J.C., 2015. Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 417, 511–533.
  • Hall, R.L., 1989. Lower Bajocian ammonites (Middle Jurassic; Sonninndae) from the Newmarracarra Limestone, Western Australia. Alcheringa 13, 1–20.
  • Hamley, T., Cisneros, J.C. & Damiani, R., 2021. A procolophonid reptile from the Lower Triassic of Australia. Zoological Journal of the Linnean Society 192, 554–609.
  • Hammer, W.R., 1987. Paleoecology and phylogeny of the Trematosauridae. In Gondwana Six: Stratigraphy, Sedimentology, and Paleontology. McKenzie, G.D., ed., American Geophysical Union, Washington, D.C., 73–83.
  • Hampe, O., 1992. Ein groβüchsiger Pliosauride (Reptilia: Plesiosauria) aus der Unterkreide (oberes Aptium) von Kolumbien. Courier Forschungsinstitut Senckenberg 145, 1–32.
  • Hancox, P.J., Damiani, R.J. & Rubidge, B.S., 2000. First occurrence of Paracyclotosaurus (Temnospondyli, Capitosauridae) in the Karoo Basin of South Africa and its biostratigraphic significance. South African Journal of Science 96, 135–137.
  • Hancox, P.J., Neveling, J. & Rubidge, B.S., 2020. Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. South African Journal of Geology 123, 217–238.
  • Harper, L.F., 1915. Geology and Miner al Resources of the Southern Coal-field; with Maps and Sections. Part I–The South Coastal Portion. Geological Survey of New South Wales Memoir 7, 1–410.
  • Hart, L.J., Campione, N.E. & McCurry, M.R., 2022. On the estimation of body mass in temnospondyls: a case study using the large‐bodied Eryops and Paracyclotosaurus. Palaeontology 65, e12629.
  • Hart, L.J., Gee, B.M., Smith, P.M. & McCurry, M.R., in press. A new chigutisaurid (Brachyopoidea, Temnospondyli) with soft tissue preservation from the Triassic Sydney Basin, New South Wales, Australia. Journal of Vertebrate Paleontology.
  • Hart, L.J., 2020. Taxonomic clarifications concerning the crocodyliform genus Isisfordia. PeerJ 8, e8630.
  • Hart, L.J., Bell, P.R., Smith, E.T., Mitchell, D.R., Brougham, T. & Salisbury, S.W., 2021. A probable skeleton of Isisfordia (Crocodyliformes) and additional crocodyliform remains from the Griman Creek Formation (Cenomanian, New South Wales, Australia). Journal of Paleontology 95, 351–366.
  • Hart, L.J., Bell, P.R., Smith, E.T. & Salisbury, S.W., 2019. Isisfordia molnari sp. nov., a new basal eusuchian from the mid-Cretaceous of Lightning Ridge, Australia. PeerJ 7, e7166.
  • Hart, L.J., McCurry, M.R., Frese, M., Peachey, T.J. & Brocks, J., 2021. The first tetrapod remains from the Upper Jurassic Talbragar Fossil Fish Bed. Alcheringa 45, 423–428.
  • Hatschek, B. & Cori, C.J., 1896. Elementarcurs der Zootomie in fünfzehn Vorlesungen. Gustav Fischer, Jena, 103 pp.
  • Haubold, H., 1971. Ichnia Amphibiorum et Reptilorum fossilium. Fisher Verlag, Stuttgart, 124 pp.
  • Haughton, S.H., 1924. On a new type of thecodont from the Middle Beaufort Beds. Annals of the Transvaal Museum 11, 93–97.
  • Haughton, S.H., 1925. Investigations in South African fossil reptiles and Amphibia (Part 13). Annals of the South African Museum 22, 227–261.
  • Helby, R., 1973. Review of Late Permian and Triassic palynology of New South Wales. Geological Society of Australia Special Publication 4, 141–155.
  • Helby, R., Morgan, R. & Partridge, A.D., 1987. A palynological zonation of the Australian Mesozoic. Memoir of the Association of Australasian Palaeontologists 4, 1–94.
  • Hell, A.J., 2001. M’Coy and the Australian ichthyosaur Ichthyosaurus australis (M’Coy, 1867). The Victorian Naturalist 118, 294–297.
  • Henderson, R.A., Crampton, J.S., Dettmann, M.E., Douglas, J.G., Haig, D., Shafik, S., Stilwell, J.D. & Thulborn, R.A., 2000. Biogeographical observations on the Cretaceous biota of Australia. Memoirs of the Association of Australian Palaeontologists 23, 355–404.
  • Herbert, C., 1983. Sydney Basin stratigraphy. in Geology of the Sydney 1:100,000 Sheet 9130. Herbert, C., ed., New South Wales Department of Natural Resources, Sydney, Australia, 7–34.
  • Herbert, C., 1997. Sequence stratigraphic analysis of early and middle Triassic alluvial and estuarine facies in the Sydney Basin, Australia. Australian Journal of Earth Sciences 44, 125–143.
  • Herne, M.C., Nair, J.P., Evans, A.R. & Tait, A.M., 2019. New small-bodied ornithopods (Dinosauria, Neornithischia) from the Early Cretaceous Wonthaggi Formation (Strzelecki Group) of the Australian-Antarctic rift system, with revision of Qantassaurus intrepidus Rich and Vickers-Rich, 1999. Journal of Paleontology 93, 543–584.
  • Herne, M.C., Nair, J.P. & Salisbury, S.W., 2010. Comment on "A southern tyrant reptile". Science 329, 1013–c.
  • Herne, M.C. & Salisbury, S.W., 2009. The status of Leallynasaura amicagraphica (Dinosauria: Ornithischia) from the Early Cretaceous of south-eastern Australia. In Conference on Australian Vertebrate Evolution, Palaeontology and Systematics 2009; Geological Society of Australia Abstracts 93. Travouillon, K.J., Worthy, T.H., Hand, S.J. & Creaser, P., eds, Geological Society of Australia, Sydney, Australia, 35.
  • Herne, M.C., Tait, A.M. & Salisbury, S.W., 2016. Sedimentological reappraisal of the Leaellynasaura amicagraphica (Dinosauria, Ornithopoda) holotype locality in the Lower Cretaceous of Victoria, Australia, with taphonomic implications for the taxon. In Cretaceous Period: Biotic Diversity and Biogeography. Khosla, A. & Lucas, S.G., eds, New Mexico Museum of Natural History and Science, Albuquerque, New Mexico, 121–148.
  • Herne, M.C., Tait, A.M., Weisbecker, V., Hall, M., Nair, J.P., Cleeland, M. & Salisbury, S.W., 2018. A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system. PeerJ 5, e4113.
  • Hill, D., Playford, G. & Woods, J.T., eds, 1966. Jurassic Fossils of Queensland. Queensland Palaeontographical Society, Brisbane, Australia, 32 pp.
  • Hills, E.S., 1958. A brief review of Australian fossil vertebrates. In Studies on Fossil Vertebrates: Essays presented to David Meredith Seares Watson. Westoll, T.S., ed., The Athlone Press, University of London, London, 86–107.
  • Hill, R.V., Witmer, L.M. & Norell, M.A., 2003. A new specimen of Pinacosaurus grangeri (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia: ontogeny and phylogeny of ankylosaurs. American Museum Novitates 3395, 1–29.
  • Hitchcock, E.H., 1845. An attempt to name, classify, and describe the animals that made the fossil footmarks of New England. Proceedings of the 6th Annual Meeting of the Association of American Geologists and Naturalists New Haven 6, 23–25.
  • Hocknull, S.A. & Cook, A.G., 2008. Hypsilophodontid (Dinosauria, Ornithischia) from latest Albian, Winton Formation, central Queensland. Memoirs of the Queensland Museum 52, 212.
  • Hocknull, S.A., White, M.A., Tischler, T.R., Cook, A.G., Calleja, N.D., Sloan, T. & Elliott, D.A., 2009. New mid-Cretaceous (latest Albian) dinosaurs from Winton, Queensland, Australia. PLoS One 4, e6190.
  • Hocknull, S.A., Wilkinson, M., Lawrence, R.A., Konstantinov, V., Mackenzie, S. & Mackenzie, R., 2021. A new giant sauropod, Australotitan cooperensis gen. et sp. nov., from the mid-Cretaceous of Australia. PeerJ 9, e11317.
  • Holgado, B. & Pêgas, R.V., 2020. A taxonomic and phylogenetic review of the anhanguerid pterosaur group Coloborhynchinae and the new clade Tropeognathinae. Acta Palaeontologica Polonica 65.
  • Holland, T., 2018. The mandible of Kronosaurus queenslandicus Longman, 1924 (Pliosauridae, Brachaucheniinae), from the Lower Cretaceous of northwest Queensland, Australia. Journal of Vertebrate Paleontology 38, e1511569.
  • Howchin, W., 1925–1930. The Building of Australia and the Succession of Life: with Special Reference to South Australia. R.E.E. Rodgers, Adelaide, 750 pp.
  • Howie, A., 1972a. A brachyopid labyrinthodont from the Lower Trias of Queensland. Proceedings of the Linnean Society of New South Wales 96, 268–277.
  • Howie, A.A., 1972b. On a Queensland labyrinthodont. In Studies in Vertebrate Evolution: Essays Presented to R. F. Parrington. Joysey, K.A. & Kemp, T.S., eds, Oliver Boyd, Edinburgh, 50–64.
  • Huene, F.v., 1914. Das natürliche System der Saurischia. Centralblatt für Mineralogie, Geologie und Paläontologie 1914, 154–158.
  • Huene, F.v., 1927. Beitrag zur Kenntnis mariner mesozoischer Wirbeltiere in Argentinien. Centralblatt für Mineralogie, Geologie und Paläontologie 1927, 22–29.
  • Huene, F.v., 1920. Gonioglyptus, ein Alttriassischer Stegocephale aus Indien. Acta Zoologica 1, 433–464.
  • Huene, F.v., 1922. Die Ichthyosaurier des Lias und ihre Zusammenhänge. Gebrüder Borntraeger, Berlin, 114 pp.
  • Huene, F.v., 1932. Die fossile Reptil-Ordnung Saurischia, ihre Entwicklung und Geschichte. Monographien zur Geologie und Paläontologie (Series 1) 4, 1–361.
  • Huene, F.v., 1946. Die grossen Stämme der Tetrapoden in den geologischen Zeiten. Biologisches Zentralblatt 65, 268–275.
  • Huxley, T.H., 1859. On some amphibian and reptilian remains from South Africa and Australia. Quarterly Journal of the Geological Society of London 15, 642–658.
  • Jaekel, O., 1914. Über die Wirbeltierfunde in der oberen Trias von Halberstadt. Paläontologische Zeitschrift 1, 155–215.
  • Jaekel, O., 1922. Neues über Hemispondyla. Paläontologische Zeitschrift 5, 1–25.
  • Jannel, A., Nair, J.P., Panagiotopoulou, O., Romilio, A. & Salisbury, S.W., 2019. "Keep your feet on the ground": simulated range of motion and hind foot posture of the Middle Jurassic sauropod Rhoetosaurus brownei and its implications for sauropod biology. Journal of Morphology 280, 849–878.
  • Jansson, I.-M., McLoughlin, S., Vajda, V. & Pole, M., 2008. An Early Jurassic flora from the Clarence-Moreton Basin, Australia. Review of Palaeobotany and Palynology 150, 5–21.
  • Jeannot, A.M., Damiani, R. & Rubidge, B.S., 2006. Cranial anatomy of the Early Triassic stereospondyl Lydekkerina huxleyi (Tetrapoda: Temnospondyli) and the taxonomy of South African lydekkerinids. Journal of Vertebrate Paleontology 26, 822–838.
  • Johnston, R.M., 1885. Discovery of a cone, probably of a species of Lepidostrobus, in the sandstones of Campania. Papers and Proceedings of the Royal Society of Tasmania 1884, 225.
  • Joyce, W.G., 2017. A review of the fossil record of basal Mesozoic turtles. Bulletin of the Peabody Museum of Natural History 58, 65–113.
  • Joyce, W.G., Parham, J.F., Anquetin, J., Claude, J., Danilov, I.G., Iverson, J.B., Kear, B.P., Lyson, T.R., Rabi, M. & Sterli, J., 2020a. Testudines. In Phylonyms: A Companion to the PhyloCode. De Queiroz, K., Cantino, P.D. & Gauthier, J.A., eds, CRC Press, Berkeley, CA, 1049–1051.
  • Joyce, W.G., Parham, J.F., Anquetin, J., Claude, J., Danilov, I.G., Iverson, J.B., Kear, B.P., Lyson, T.R., Rabi, M. & Sterli, J., 2020b. Testudinata. In Phylonyms: A Companion to the PhyloCode. De Queiroz, K., Cantino, P.D. & Gauthier, J.A., eds, CRC Press, Berkeley, CA, USA, 1045–1048.
  • Joyce, W.G., Parham, J.F. & Gauthier, J.A., 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology 78, 989–1013.
  • Jupp, R. & Warren, A.A., 1986. The mandibles of the Triassic temnospondyl amphibians. Alcheringa 10, 99–124.
  • Kalandadze, N.N., 1968. Каталог пермских и триасовых тетрапод СССР. In Верхнепалеозойские и мезозойские земноводные и пресмыкающиеся СССР. Наука, Moscow, Russia, 72–91.
  • Kaup, J.J., 1834. Versuch einer Eintheilung der Saugethiere in 6 Stämme und der Amphibien in 6 Ordnungen. Isis 3, 311–315.
  • Kear, B.P., 2001a. Dental caries in an Early Cretaceous ichthyosaur. Alcheringa: An Australasian Journal of Palaeontology 25, 387–390. https://doi.org/10.1080/03115510108619228
  • Kear, B.P., 2001b. Elasmosaur (Reptilia: Plesiosauria) basicranial remains from the Early Cretaceous of Queensland. Records of the South Australian Museum 34, 127–133.
  • Kear, B.P., 2002a. Darwin Formation (Early Cretaceous, Northern Territory) marine reptile remains in the South Australian Museum. Records of the South Australian Museum 35, 33–47.
  • Kear, B.P., 2002b. Reassessment of the Early Cretaceous plesiosaur Cimoliasaurus maccoyi Etheridge, 1904 (Reptilia: Sauropterygia) from White Cliffs, New South Wales. Australian Journal of Zoology 50, 671–685.
  • Kear, B.P., 2003. Cretaceous marine reptiles of Australia: a review of taxonomy and distribution. Cretaceous Research 24, 277–303.
  • Kear, B.P., 2004. Biogeographic and biostratigraphic implications of Australian Mesozoic marine reptiles. Australian Biologist 17, 4–22.
  • Kear, B.P., 2005a. Cranial morphology of Platypterygius longmani Wade, 1990 (Reptilia: Ichthyosauria) from the Lower Cretaceous of Australia. Zoological Journal of the Linnean Society 145, 583–622.
  • Kear, B.P., 2005b. Marine reptiles from the Lower Cretaceous (Aptian) deposits of White Cliffs, south-eastern Australia: implications of a high-latitude cold water assemblage. Cretaceous Research 26, 769–782.
  • Kear, B.P., 2005c. A new elasmosaurid plesiosaur from the Lower Cretaceous of Queensland, Australia. Journal of Vertebrate Paleontology 25, 792–805.
  • Kear, B.P., 2006a. Plesiosaur remains from Cretaceous high-latitude non-marine deposits in southeastern Australia. Journal of Vertebrate Paleontology 26, 196–199.
  • Kear, B.P., 2006b. First gut contents in a Cretaceous sea turtle. Biology Letters 2, 113–115.
  • Kear, B.P., 2006c. Marine reptiles from the Lower Cretaceous of South Australia: elements of a high-latitude cold-water assemblage. Palaeontology 49, 837–856.
  • Kear, B.P., 2006d. Reassessment of Cratochelone berneyi Longman, 1915, a giant sea turtle from the Early Cretaceous of Australia. Journal of Vertebrate Paleontology 26, 779–783.
  • Kear, B.P., 2007a. A juvenile pliosauroid plesiosaur (Reptilia: Sauropterygia) from the Lower Cretaceous of South Australia. Journal of Paleontology 81, 154–162.
  • Kear, B.P., 2007b. Taxonomic clarification of the Australian elasmosaurid genus Eromangasaurus, with reference to other austral elasmosaur taxa. Journal of Vertebrate Paleontology 27, 241–246.
  • Kear, B.P., 2009. Proterosuchid archosaur remains from the Early Triassic Bulgo Sandstone of Long Reef, New South Wales. Alcheringa 33, 331–337.
  • Kear, B.P., 2012. A revision of Australia’s Jurassic plesiosaurs. Palaeontology 55, 1125–1138.
  • Kear, B.P., 2016. Cretaceous marine amniotes of Australia: perspectives on a decade of new research. Memoirs of Museum Victoria 74, 17–28.
  • Kear, B.P. & Barrett, P.M., 2011. Reassessment of the Lower Cretaceous (Barremian) pliosauroid Leptocleidus superstes Andrews, 1922 and other plesiosaur remains from the nonmarine Wealden succession of southern England. Zoological Journal of the Linnean Society 161, 663–691.
  • Kear, B.P., Boles, W.E. & Smith, E.T., 2003. Unusual gut contents in a Cretaceous ichthyosaur. Proceedings of the Royal Society B 270, S206–S208.
  • Kear, B.P., Deacon, G.L. & Siverson, M., 2010. Remains of a Late Cretaceous pterosaur from the Molecap Greensand of Western Australia. Alcheringa 34, 273–279.
  • Kear, B.P., Fordyce, R.E., Hiller, N. & Siversson, M., 2018. A palaeobiogeographical synthesis of Australasian Mesozoic marine tetrapods. Alcheringa 42, 461–486.
  • Kear, B.P. & Hamilton-Bruce, R.J., 2011. Dinosaurs in Australia: Mesozoic Life from the Southern Continent. CSIRO Publishing, Melbourne, Australia, 200 pp.
  • Kear, B.P. & Lee, M.S.Y., 2006. A primitive protostegid from Australia and early sea turtle evolution. Biology Letters 2, 116–119.
  • Kear, B.P., Long, J.A. & Martin, J.E., 2005. A review of Australian mosasaur occurrences. Netherlands Journal of Geosciences – Geologie en Mijnbouw 84, 307–313.
  • Kear, B.P., Schroeder, N.I. & Lee, M.S.Y., 2006. An archaic crested plesiosaur in opal from the Lower Cretaceous high-latitude deposits of Australia. Biology Letters 2, 615–619.
  • Kear, B.P. & Siverson, M., 2010. First evidence of a Late Cretaceous sea turtle from Australia. Alcheringa 34, 265–272.
  • Kear, B.P. & Zammit, M., 2014. In utero foetal remains of the Cretaceous ichthyosaurian Platypterygius : ontogenetic implications for character state efficacy. Geological Magazine 151, 71–86. https://doi.org/10.1017/S0016756813000113
  • Kellner, A.W.A., 2003. Pterosaur phylogeny and comments on the evolutionary history of the group. In Evolution and Palaeobiology of Pterosaurs; Geological Society Special Publication, 217. Buffetaut, É. & Mazin, J.-M., eds, Geological Society, London, 105–137.
  • Kellner, A.W.A., Rich, T.H., Costa, F.R., Vickers-Rich, P., Kear, B.P., Walters, M. & Kool, L., 2010. New isolated pterodactyloid bones from the Albian Toolebuc Formation (western Queensland, Australia) with comments on the Australian pterosaur fauna. Alcheringa 34, 219–230.
  • Kellner, A.W.A., Rodrigues, T. & Costa, F.R., 2011. Short note on a pteranodontoid pterosaur (Pterodactyloidea) from western Queensland, Australia. Anais da Academia Brasileira de Ciências 83, 301–308.
  • Ketchum, H.F. & Benson, R.B.J., 2010. Global interrelationships of Plesiosauria (Reptilia, Sauropterygia) and the pivotal role of taxon sampling in determining the ouctome of phylogenetic analyses. Biological Reviews 85, 361–392.
  • Kielan-Jaworowska, Z., Cifelli, R.L. & Luo, Z., 1998. Alleged Cretaceous placental from down under. Lethaia 31, 267–268.
  • Kielan-Jaworowska, Z., Cifelli, R.L. & Luo, Z.-X., eds, 2004. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New York, 630 pp.
  • King, G.M., 1983. First mammal-like reptile from Australia (comment). Nature 306, 209.
  • Kitchener, J.L., Campione, N.E., Smith, E.T. & Bell, P.R., 2019. High-latitude neonate and perinate ornithopods from the mid-Cretaceous of southeastern Australia. Scientific Reports 9, 19600.
  • Kitching, J.W. & Raath, M.A., 1984. Fossils from the Elliot and Clarens formations (Karoo sequence) of the northeastern Cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. Palaeontologia Africana 25, 111–125.
  • Klein, J.T., 1760. Classification und Kurze Geschichte der Vierfüßigen Thiere, aus dem Lateinischen übersetzt, und mit Zusätzen vermehret, nebst einer Vorrede von F. D. Behn. Jonas Schmidt, Lübeck, Germany, 381 pp.
  • Klinkhamer, A.J., Mallison, H., Poropat, S.F., Sinapius, G.H.K. & Wroe, S., 2018. Three‐dimensional musculoskeletal modelling of the sauropodomorph hind limb: the effect of postural change on muscle leverage. Anatomical Record 301, 2145–2163.
  • Klinkhamer, A.J., Mallison, H., Poropat, S.F., Sloan, T. & Wroe, S., 2019. Comparative three-dimensional moment arm analysis of the sauropod forelimb: implications for the transition to a wide-gauge stance in titanosaurs. Anatomical Record 302, 794–817.
  • Kotevski, J. & Poropat, S.F., 2022. On the first dinosaur tooth reported from Australia (Theropoda: Megaraptoridae). Alcheringa: An Australasian Journal of Palaeontology 46, 174–179.
  • Krieg, G.W. & Rogers, P.A., 1995. Stratigraphy: marine succession. In The Geology of South Australia. Volume 2. The Phanerozoic. Drexel, J.F. & Preiss, W.V., eds, Geological Survey of South Australia Bulletin 54, Adelaide, 112–123.
  • Krummeck, W.D. & Bordy, E.M., 2018. Reniformichnus katikatii (new ichnogenus and ichnospecies): continental vertebrate burrows from the Lower Triassic, main Karoo Basin, South Africa. Ichnos 25, 138–149.
  • Kubo, T., Mitchell, M.T. & Henderson, D.M., 2012. Albertonectes vanderveldei, a new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Alberta. Journal of Vertebrate Paleontology 32, 557–572.
  • Kuhn, O., 1961. Die Familien der rezenten und fossilen Amphibien und Reptilien. Meisenbach, Bamberg, 79 pp.
  • Kundrát, M., Rich, T.H., Lindgren, J., Sjövall, P., Vickers-Rich, P., Chiappe, L.M. & Kear, B.P., 2020. A polar dinosaur feather assemblage from Australia. Gondwana Research 80, 1–11.
  • Kurochkin, E.N. & Molnar, R.E., 1997. New material of enantiornithine birds from the Early Cretaceous of Australia. Alcheringa 21, 291–297.
  • La Croix, A.D., Sobczak, K., Esterle, J.S., Bianchi, V., Wang, J., He, J., Hayes, P., Underschultz, J.R. & Garnett, A., 2022. Integrating palynostratigraphy with zircon geochronology in the Lower Jurassic Precipice Sandstone and Evergreen Formation to improve stratigraphic correlation within the Great Artesian Basin, Australia. Marine and Petroleum Geology 144, 105845.
  • Lamanna, M.C., Casal, G.A., Martínez, R.D.F. & Ibiricu, L.M., 2020. Megaraptorid (Theropoda: Tetanurae) partial skeletons from the Upper Cretaceous Bajo Barreal Formation of central Patagonia, Argentina: implications for the evolution of large body size in Gondwanan megaraptorans. Annals of Carnegie Museum 86, 255–294.
  • Laurin, M. & Reisz, R.R., 1995. A reevaluation of early amniote phylogeny. Zoological Journal of the Linnean Society 113, 165–223.
  • Leahey, L.G., Molnar, R.E., Carpenter, K., Witmer, L.M. & Salisbury, S.W., 2015. Cranial osteology of the ankylosaurian dinosaur formerly known as Minmi sp. (Ornithischia: Thyreophora) from the Lower Cretaceous Allaru Mudstone of Richmond, Queensland, Australia. PeerJ 3, e1475.
  • Leahey, L.G. & Salisbury, S.W., 2013. First evidence of ankylosaurian dinosaurs (Ornithischia: Thyreophora) from the mid-Cretaceous (late Albian–Cenomanian) Winton Formation of Queensland, Australia. Alcheringa 37, 249–257.
  • Leidy, J. 1851. [Descriptions of a number of fossil reptilian and mammalian remains]. Proceedings of the Academy of Natural Sciences of Philadelphia 5, 325–327.
  • Leite, K.J. & Fortier, D.C., 2018. The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications. PeerJ 6, e5372.
  • Linnaeus, C., 1758. Systema Naturae per Regna Tria Naturae. Vol. 1. Regnum Animale. Tenth Edition. Trustees of the British Museum (Natural History), London, 823 pp.
  • Lockley, M.G., Meyer, C.A. & Dos Santos, V.F., 1996. Megalosauripus, Megalosaropus[sic] and the concept of megalosaur footprints. Museum of Northern Arizona Bulletin 60, 113–118.
  • Lockley, M.G., Meyer, C.A. & Dos Santos, V.F., 2000. Megalosauripus and the problematic concept of megalosaur footprints. In Aspects of Theropod Paleobiology; Gaia, 15. Pérez-Moreno, B.P., Holtz, T.R., Jr., Sanz, J.L. & Moratalla, J.J., eds, 313–337. Museu Nacional de História Natural, Universidade de Lisboa.
  • Long, J., 1990. Dinosaurs of Australia and other Animals of the Mesozoic Era. Reed Books, Balgowah, New South Wales, 87 pp.
  • Long, J., 1993. Dinosaurs of Australia and other Animals of the Triassic, Jurassic and Cretaceous Periods. Reed Books, Balgowah, New South Wales, 87 pp.
  • Long, J.A., 1992a. Cretaceous dinosaur ichnofauna from Broome, Western Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 9, 262.
  • Long, J.A., 1992b. First dinosaur bones from Western Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 9, 21–27.
  • Long, J.A., 1995. A theropod dinosaur bone from the Late Cretaceous Molecap Greensand, Western Australia. Records of the Western Australian Museum 17, 143–146.
  • Long, J.A., 1998. Dinosaurs of Australia and New Zealand and other Prehistoric Animals of the Mesozoic Era. University of New South Wales Press, Sydney, 188 pp.
  • Long, J.A. & Buffetaut, E., 2001. A biogeographic comparison of the dinosaurs and associated vertebrate faunas from the Mesozoic of Australia and Southeast Asia. In Faunal and floral migrations and evolution in SE Asia-Australasia. Metcalfe, I., Smith, J.M.B., Morwood M. & Davidson I., eds, A.A. Balkema, Lisse, 97–103.
  • Long, J.A. & Cruickshank, A.R.I., 1998. Further records of plesiosaurian reptiles of Jurassic and Cretaceous age from Western Australia. Records of the Western Australian Museum 19, 47–55.
  • Longman, H.A., 1915. On a giant turtle from the Queensland Lower Cretaceous. Memoirs of the Queensland Museum 3, 24–29.
  • Longman, H.A., 1924. A new gigantic marine reptile from the Queensland Cretaceous, Kronosaurus queenslandicus new genus and species. Memoirs of the Queensland Museum 8, 26–28.
  • Longman, H.A., 1926. A giant dinosaur from Durham Downs, Queensland. Memoirs of the Queensland Museum 8, 183–194.
  • Longman, H.A., 1927a. The giant dinosaur: Rhoetosaurus brownei. Memoirs of the Queensland Museum 9, 1–18.
  • Longman, H.A., 1927b. Australia’s largest fossil. The Rhoetosaurus dinosaur. Australian Museum Magazine 3, 97–102.
  • Longman, H.A., 1930. Kronosaurus queenslandicus. A gigantic Cretaceous pliosaur. Memoirs of the Queensland Museum 10, 1–7.
  • Longman, H.A., 1933. A new dinosaur from the Queensland Cretaceous. Memoirs of the Queensland Museum 10, 131–144.
  • Longman, H.A., 1935. Palaeontological notes. Memoirs of the Queensland Museum 10, 236–239.
  • Longman, H.A., 1941. A Queensland fossil amphibian. Memoirs of the Queensland Museum 12, 29–32.
  • Longman, H.A., 1943. Further notes on Australian ichthyosaurs. Memoirs of the Queensland Museum 12, 101–104.
  • Long, J.A. & Molnar, R.E., 1998. A new Jurassic theropod dinosaur from Western Australia. Records of the Western Australian Museum 19, 121–129.
  • Ludbrook, N.H., 1966. Cretaceous biostratigraphy of the Great Artesian Basin in South Australia. Geological Survey of South Australia, Bulletin 40, 1–223.
  • Lundelius, E., Jr. & Warne, S.S.J., 1960. Mosasaur remains from the Upper Cretaceous of Western Australia. Journal of Paleontology 34, 1215–1217.
  • Luo, Z.-X., Cifelli, R.L. & Kielan-Jaworowska, Z., 2001. Dual origin of tribosphenic mammals. Nature 409, 53–57.
  • Luo, Z.-X., Kielan-Jaworowska, Z. & Cifelli, R.L., 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47, 1–78.
  • Lydekker, R., 1885. Indian pre-Tertiary Vertebrata. The Reptilia and Amphibia of the Maleri and Denwa groups. Palaeontologia Indica 1, 1–38.
  • Lydekker, R., 1889a. Note on the occurrence of a species of Bothriceps in the Karoo System of South Africa. Journal of Natural History 4, 475–476.
  • Lydekker, R., 1889b. Note on some points in the nomenclature of fossil reptiles and amphibians, with preliminary notices of two new species. Geological Magazine 6 (Decade III), 325–326.
  • Lydekker, R., 1890. Catalogue of the fossil Reptilia and Amphibia in the British Museum. Part IV. Containing the orders Anomodontia, Ecaudata, Caudata and Labyrinthodontia. British Museum (Natural History), London, 295 pp.
  • M’Coy, F., 1867. On the occurrence of Ichthyosaurus and Plesiosaurus in Australia. Annals and Magazine of Natural History 19 (series 3), 355–356.
  • Madzia, D., Boyd, C.A. & Mazuch, M., 2018. A basal ornithopod dinosaur from the Cenomanian of the Czech Republic. Journal of Systematic Palaeontology 16, 967–979.
  • Madzia, D., Jagt, J.W.M. & Mulder, E.W.A., 2020. Osteology, phylogenetic affinities and taxonomic status of the enigmatic late Maastrichtian ornithopod taxon Orthomerus dolloi (Dinosauria, Ornithischia). Cretaceous Research 108, 104334.
  • Maganuco, S., Steyer, J.S., Pasini, G., Boulay, M., Lorrain, S., Bénéteau, A. & Auditore, M., 2009. An exquisite specimen of Edingerella madagascariensis (Temnospondyli) from the Lower Triassic of NW Madagascar; cranial anatomy, phylogeny, and restorations. Memorie della Società Italiana de Scienze Naturali e del Museo Civico di Storia Naturale di Milano 36, 1–72.
  • Maisch, M.W. & Matzke, A.T., 2005. Temnospondyl amphibians from the Jurassic of the Southern Junggar Basin (NW China). Paläontologische Zeitschrift 79, 285–301.
  • Maisch, M.W., Matzke, A.T. & Sun, G., 2004. A relict trematosauroid (Amphibia: Temnospondyli) from the Middle Jurassic of the Junggar Basin (NW China). Naturwissenschaften 91, 589–593.
  • Mannion, P.D., Allain, R. & Moine, O., 2017. The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae. PeerJ 5, e3217.
  • Mannion, P.D. & Calvo, J.O., 2011. Anatomy of the basal titanosaur (Dinosauria, Sauropoda) Andesaurus delgadoi from the mid-Cretaceous (Albian–early Cenomanian) Río Limay Formation, Neuquén Province, Argentina: implications for titanosaur systematics. Zoological Journal of the Linnean Society 163, 155–181.
  • Mannion, P.D., Upchurch, P., Barnes, R.N. & Mateus, O., 2013. Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zoological Journal of the Linnean Society 168, 98–206.
  • Mannion, P.D., Upchurch, P., Schwarz, D. & Wings, O., 2019. Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution. Zoological Journal of the Linnean Society 185, 784–909.
  • Marsh, O.C., 1876. Notice of a new sub-order of Pterosauria. American Journal of Science 11 (Series 3), 507–509.
  • Marsh, O.C., 1878. Principal characters of American Jurassic dinosaurs: Part I. American Journal of Science 16 (series 3), 411–416.
  • Marsh, O.C., 1880. Notice on Jurassic mammals representing two new orders. American Journal of Science (Series 3)20, 235–239.
  • Marsh, O.C., 1881. Principal characters of American Jurassic dinosaurs. Part V. American Journal of Science 21 (series 3), 417–423.
  • Marsicano, C.A. 1999. Chigutisaurid amphibians from the Upper Triassic of Argentina and their phylogenetic relationships. Palaeontology 42, 545–565.
  • Marsicano, C.A. & Warren, A., 1998. The first Paleozoic rhytidosteid: Trucheosaurus major (Woodward, 1909) from the Late Permian of Australia, and a reassessment of the Rhytidosteidae (Amphibia, Temnospondyli). Bulletin of the Natural History Museum, London (Geology) 54, 147–154.
  • Martin, A.J., 2009. Dinosaur burrows in the Otway Group (Albian) of Victoria, Australia, and their relation to Cretaceous polar environments. Cretaceous Research 30, 1223–1237.
  • Martin, A.J., 2016. A close look at Victoria’s first known dinosaur tracks. Memoirs of Museum Victoria 74, 63–71.
  • Martin, T., Goin, F.J., Schultz, J.A. & Gelfo, J.N., 2022. Early Late Cretaceous mammals from southern Patagonia, Santa Cruz Province, Argentina. Cretaceous Research 133, 105–127.
  • Martin, T. & Luo, Z.-X., 2005. Homoplasy in the mammalian ear. Science 307, 861–862.
  • Martin, A.J., Rich, T.H., Hall, M., Vickers-Rich, P. & Vazquez-Prokopec, G., 2012. A polar dinosaur-track assemblage from the Eumeralla Formation (Albian), Victoria, Australia. Alcheringa 36, 171–188.
  • Martin, J.E., Smith, T., Salaviale, C., Adrien, J. & Delfino, M., 2020. Virtual reconstruction of the skull of Bernissartia fagesii and current understanding of the neosuchian–eusuchian transition. Journal of Systematic Palaeontology 18, 1079–1101.
  • Martin, A.J., Vickers-Rich, P., Rich, T.H. & Hall, M., 2014. Oldest known avian footprints from Australia: Eumeralla Formation (Albian), Dinosaur Cove, Victoria. Palaeontology 57, 7–19.
  • Martínez, R.D.F., Lamanna, M.C., Novas, F.E., Ridgely, R.C., Casal, G.A., Martínez, J.E., Vita, J.R. & Witmer, L.M., 2016. A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: implications for the evolution and paleobiology of Titanosauria. PLOS One 11, e0151661.
  • Marx, M.P., Mateus, O., Polcyn, M.J., Schulp, A.S., Gonçalves, A.O. & Jacobs, L.L., 2021. The cranial anatomy and relationships of Cardiocorax mukulu (Plesiosauria: Elasmosauridae) from Bentiaba, Angola. PLoS One 16, e0255773.
  • Mays, C. & McLoughlin, S., 2022. End-Permian burnout: the role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in Eastern Gondwana. PALAIOS 37, 292–317.
  • Mays, C., Vajda, V., Frank, T.D., Fielding, C.R., Nicoll, R.S., Tevyaw, A.P. & McLoughlin, S., 2020. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bulletin, 132, 1489–1513.
  • McDonald, A.T., 2012. Phylogeny of basal iguanodonts (Dinosauria: Ornithischia): an update. PLoS One 7, e36745.
  • McGowan, C., 1972. The systematics of Cretaceous ichthyosaurs with particular reference to the material from North America. University of Wyoming Contributions to Geology 11, 9–29.
  • McGowan, C. & Motani, R., 2003. Ichthyopterygia. Verlag Dr. Friedrich Pfeil, München, 175 pp.
  • McHenry, C.R., Cook, A.G. & Wroe, S., 2005. Bottom-feeding plesiosaurs. Science 310, 75.
  • McHenry, C.R., 2009. ‘Devourer of Gods’: The palaeoecology of the Cretaceous pliosaur Kronosaurus queenslandicus. Ph.D. thesis, University of Newcastle. (unpublished) 616 pp.
  • McIntosh, J.S., 1990. Sauropoda. In The Dinosauria. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 345–401.
  • McKenna, M.C., 1975. Toward a phylogenetic classification of the Mammalia. In Phylogeny of the Primates. Luckett, W.P. & Szalay, F.S., eds, Cambridge University Press, Cambridge, 21–46.
  • McKenzie, K.G., 1961. Vertebrate localities in the Triassic Blina Shale of the Canning Basin, Western Australia. Journal of the Royal Society of Western Australia 44, 69–76.
  • McLoughlin, S., Haig, D.W., Backhouse, J., Holmes, M.A., Ellis, G., Long, J.A. & McNamara, K.J., 1995. Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian–Barremian. Journal of Australian Geology and Geophysics 15, 445–468.
  • McLoughlin, S., Jansson, I.-M. & Vajda, V., 2014. Megaspore and microfossil assemblages reveal diverse herbaceous lycophytes in the Australian Early Jurassic flora. Grana 53, 22–53.
  • McLoughlin, S., Mays, C., Vajda, V., Bocking, M., Frank, T.D. & Fielding, C.R., 2020. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357.
  • McLoughlin, S., Nicoll, R.S., Crowley, J.L., Vajda, V., Mays, C., Fielding, C.R., Frank, T.D., Wheeler, A. & Bocking, M., 2021. Age and paleoenvironmental significance of the Frazer Beach Member – a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Frontiers in Earth Science 8, 600976.
  • McMinn, A., 1985. Palynostratigraphy of the Middle Permian coal sequences of the Sydney Basin. Australian Journal of Earth Sciences 32, 301–309
  • Meakin, S., 2011. Geodiversity of the Lightning Ridge area and implications for geotourism. Proceedings of the Linnean Society of New South Wales 132, 71–82.
  • Metcalfe, I., Crowley, J.L., Nicoll, R.S. & Schmitz, M., 2015). High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research 28, 61–81.
  • Mobbs, C., 1990. The creature from our inland sea. Australian Geographic 20, 26–27.
  • Molnar, R., 1980a. Australian late Mesozoic terrestrial tetrapods: some implications. Mémoires de la Société Géologique de France (Nouvelle Série) 139, 131–143.
  • Molnar, R.E., 1980b. An ankylosaur (Ornithischia: Reptilia) from the Lower Cretaceous of southern Queensland. Memoirs of the Queensland Museum 20, 77–87.
  • Molnar, R.E., 1980c. Procoelous crocodile from Lower Cretaceous of Lightning Ridge, N.S.W. Memoirs of the Queensland Museum 20, 65–75.
  • Molnar, R.E., 1984. Ornithischian dinosaurs in Australia. In Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers. Reif, W.-E. & Westphal, F., eds, University Press, Tübingen, 151–156.
  • Molnar, R.E., 1986. An enantiornithine bird from the Lower Cretaceous of Queensland, Australia. Nature 322, 736–738.
  • Molnar, R.E., 1987. A pterosaur pelvis from western Queensland, Australia. Alcheringa 11, 87–94.
  • Molnar, R.E., 1991. Fossil reptiles in Australia. In Vertebrate Palaeontology of Australasia. Vickers-Rich, P., Monaghan, J.M., Baird, R.F. & Rich, T.H., eds, Pioneer Design Studio, Melbourne, 605–702.
  • Molnar, R.E., 1995. Possible convergence in the jaw mechanisms of ceratopians and Muttaburrasaurus. In Sixth Symposium on Mesozoic Terrestrial Ecosystems and Biota, Short Papers. Sun, A. & Wang, Y., eds, China Ocean Press, Beijing, 115–117.
  • Molnar, R.E., 1996a. Observations on the Australian ornithopod Muttaburrasaurus. Memoirs of the Queensland Museum 39, 639–652.
  • Molnar, R.E., 1996b. Preliminary report on a new ankylosaur from the Early Cretaceous of Queensland, Australia. Memoirs of the Queensland Museum 39, 653–668.
  • Molnar, R.E., 1999. Avian tibiotarsi from the Early Cretaceous of Lightning Ridge, New South Wales. In Proceedings of the Second Gondwanan Dinosaur Symposium: National Science Museum Monograph, 15. Tomida, Y., Rich, T.H. & Vickers-Rich, P., eds, National Science Museum, Tokyo, Japan, 197–209.
  • Molnar, R.E., 2001a. Armor of the small ankylosaur Minmi. In The Armored Dinosaurs. Carpenter, K., ed., Indiana University Press, Bloomington & Indianapolis, IA, 341–362.
  • Molnar, R.E., 2001b. A reassessment of the phylogenetic position of Cretaceous sauropod dinosaurs from Queensland, Australia. In VII International Symposium on Mesozoic Terrestrial Ecosystems: Asociacíon Paleontológica Argentina Publicación Especial No. 7. Leanza, H.A., ed., Asociacion Paleontologica Argentina, Buenos Aires, 139–144.
  • Molnar, R.E., 2010. Taphonomic observations on eastern Australian Cretaceous sauropods. Alcheringa 34, 421–429.
  • Molnar, R.E., 2011a. Sauropod (Saurischia: Dinosauria) material from the Early Cretaceous Griman Creek Formation of the Surat Basin, Queensland, Australia. Alcheringa 35, 303–307.
  • Molnar, R.E., 2011b. New morphological information about Cretaceous sauropod dinosaurs from the Eromanga Basin, Queensland, Australia. Alcheringa 35, 329–339.
  • Molnar, R.E. & Clifford, H.T., 2000. Gut contents of a small ankylosaur. Journal of Vertebrate Paleontology 20, 194–196.
  • Molnar, R.E. & Clifford, H.T., 2001. An ankylosaurian cololite from the Lower Cretaceous of Queensland, Australia. In The Armored Dinosaurs. Carpenter, K., ed., Indiana University Press, Bloomington & Indianapolis, IA, 399–412.
  • Molnar, R.E., Flannery, T.F. & Rich, T.H.V., 1981. An allosaurid theropod dinosaur from the Early Cretaceous of Victoria, Australia. Alcheringa 5, 141–146.
  • Molnar, R.E., Flannery, T.F. & Rich, T.H.V., 1985. Aussie Allosaurus after all. Journal of Paleontology 59, 1511–1513.
  • Molnar, R.E. & Frey, E., 1987. The paravertebral elements of the Australian ankylosaur Minmi (Reptilia: Ornithischia, Cretaceous). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 175, 19–37.
  • Molnar, R.E. & Galton, P.M., 1986. Hypsilophodontid dinosaurs from Lightning Ridge, New South Wales, Australia. Géobios 19, 231–243.
  • Molnar, R.E. & Pledge, N.S., 1980. A new theropod dinosaur from South Australia. Alcheringa 4, 281–287.
  • Molnar, R.E. & Salisbury, S.W., 2005. Observations on Cretaceous sauropods from Australia. In Thunder-lizards: The Sauropodomorph Dinosaurs. Tidwell, V. & Carpenter, K., eds, Indiana University Press, Bloomington & Indianapolis, IA, 454–465.
  • Molnar, R.E., 1982. Australian Mesozoic reptiles. In Fossil Vertebrate Record of Australasia. Rich, P.V. & Thompson, E.M., eds, Monash University Press, Clayton, Victoria, 169–225.
  • Molnar, R.E. & Thulborn, R.A., 1980. First pterosaur from Australia. Nature 288, 361–363.
  • Molnar, R.E. & Thulborn, R.A., 2007. An incomplete pterosaur skull from the Cretaceous of north-central Queensland, Australia. Arquivos do Museu Nacional, Rio de Janeiro 65, 461–470.
  • Molnar, R.E. & Willis, P.M.A., 2001. New crocodyliform material from the Early Cretaceous Griman Creek Formation, at Lightning Ridge, New South Wales. In Crocodilian Biology and Evolution. Grigg, G.C., Seebacher, F. & Franklin, C.E., eds, Surrey Beatty & Sons, Chipping Norton, 75–82.
  • Mones, A., 1989. Nomen dubium vs. nomen vanum. Journal of Vertebrate Paleontology 9, 232–234.
  • Montefeltro, F.C., Bronzati, M., Langer, M.C. & Anelli, L.E., 2019. A new specimen of Susisuchus anatoceps (Crocodyliformes, Neosuchia) with a non-eusuchian-type palate. Journal of Vertebrate Paleontology 39, e1716240.
  • Moodie, R.L., 1911. Recent contributions to a knowledge of the extinct Amphibia. American Naturalist 45, 375–384.
  • Morante, R., 1996. Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian-Triassic boundary. Historical Biology, 11, 289–310.
  • Morris, J., 1843. A Catalogue of British Fossils. British Museum, London, 222 pp.
  • Mory, A.J., Haig, D.W., McLoughlin, S. & Hocking, R.M., 2005. Geology of the northern Perth Basin, Western Australia: a field guide. Record of the Western Australian Geological Survey 2005, 1–71.
  • Moser, M. & Schoch, R., 2007. Revision of the type material and nomenclature of Mastodonsaurus giganteus (Jaeger) (Temnospondyli) from the Middle Triassic of Germany. Palaeontology 50, 1245–1266.
  • Motani, R., 1999. Phylogeny of the Ichthyopterygia. Journal of Vertebrate Paleontology 19, 473–496.
  • Motani, R., Jiang, D.-Y., Chen, G.-B., Tintori, A., Rieppel, O., Ji, C. & Huang, J.-D., 2015. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature.
  • Mukherjee, R.N. & Sengupta, D.P., 1998. New capitosaurid amphibians from the Triassic Denwa Formation of the Satpura Gondwana Basin, central India. Alcheringa 22, 317–327.
  • Murray, P.F., 1985. Ichthyosaurs from Cretaceous Mullaman Beds near Darwin, Northern Territory. The Beagle, Occasional Papers of the Northern Territory Museum of Arts and Sciences 2, 39–55.
  • Murray, P.F., 1987. Plesiosaurs from Albian-aged Bathurst Island Formation siltstones near Darwin, Northern Territory, Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 4, 95–102.
  • Murray, A., Riguetti, F. & Rozadilla, S., 2019. New ankylosaur (Thyreophora, Ornithischia) remains from the Upper Cretaceous of Patagonia. Journal of South American Earth Sciences 96, 102320.
  • Musser, A.M., 2003. Review of the monotreme fossil record and comparison of palaeontological and molecular data. Comparative Biochemistry and Physiology Part A 136, 927–942.
  • Musser, A.M., 2013. Classification and evolution of the monotremes. In Neurobiology of Monotremes: Brain Evolution in our Distant Mammalian Cousins. Ashwell, K., ed., CSIRO Publishing, Collingwood, Australia, 1–16.
  • Myers, T., 2007. Osteological morphometrics of Australian chelonioid turtles. Zoological Science 24, 1012–1027.
  • Nair, J.P. & Salisbury, S.W., 2012. New anatomical information on Rhoetosaurus brownei Longman, 1926, a gravisaurian sauropodomorph dinosaur from the Middle Jurassic of Queensland, Australia. Journal of Vertebrate Paleontology 32, 369–394.
  • Naish, D. & Cau, A. 2022. The osteology and affinities of Eotyrannus lengi, a tyrannosauroid theropod from the Wealden Supergroup of southern England. PeerJ 10, e12727.
  • Nessov, L.A., 1988. Late Mesozoic amphibians and lizards of Soviet Middle Asia. Acta Zoologica Cracoviensia 31, 475–486.
  • Nicholson, H.A. & Lydekker, R., 1889. A Manual of Palaeontology for the use of Students, with a General Introduction on the Principles of Palaeontology, Volume II. William Blackwood and Sons, Edinburgh and London, 1624 pp.
  • Niedźwiedzki, G., Bajdek, P., Owocki, K., & Kear, B.P., 2016. An Early Triassic polar predator ecosystem revealed by vertebrate coprolites from the Bulgo Sandstone (Sydney Basin) of southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 464, 5–15.
  • Nield, C.M., Damiani, R. & Warren, A., 2006. A short-snouted trematosauroid (Tetrapoda, Temnospondyli) from the Early Triassic of Australia: the oldest known trematosaurine. Alcheringa 30, 263–271.
  • Noè, L.F. & Gómez-Pérez, M., 2022. Giant pliosaurids (Sauropterygia; Plesiosauria) from the Lower Cretaceous peri-Gondwanan seas of Colombia and Australia. Cretaceous Research 132, 105122.
  • Nonsrirach, T., Manitkoon, S. & Lauprasert, K., 2021. First occurrence of brachyopid temnospondyls in Southeast Asia and review of the Mesozoic amphibians from Thailand. Fossil Record 24, 33–47.
  • Nopcsa, F., 1915. Die Dinosaurier des Siebenbürgischen Landesteile Ungarns. Mitteilungen aus dem Jahrbuche der königlich ungarischen geologischen Reichsanstalt, Budapest 23, 1–24.
  • Norman, D.B., 2004. Basal Iguanodontia. In The Dinosauria: Second Edition. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 413–437.
  • Norman, D.B., Sues, H.-D., Witmer, L.M. & Coria, R.A., 2004. Basal Ornithopoda. In The Dinosauria: Second Edition. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 393–412.
  • Novas, F.E., Agnolín, F.L., Ezcurra, M.D., Porfiri, J. & Canale, J.I., 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: the evidence from Patagonia. Cretaceous Research 45, 174–215.
  • Novas, F.E., Cambiaso, A.V. & Ambrosio, A., 2004. A new basal iguanodontian (Dinosauria, Ornithischia) from the Upper Cretaceous of Patagonia. Ameghiniana 41, 75–82.
  • Novikov, I.V., 2012. New data on trematosauroid labyrinthodonts of Eastern Europe: 3. Qantas samarensis gen. et sp. nov. Paleontological Journal 46, 177–186.
  • O’Brien, P.E. & Wells, A.T., 1994. Sedimentology of the Bundamba Group, Clarence-Moreton Basin. In Geology and petroleum potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation Bulletin 241. Wells, A.T. & O’Brien, P.E., eds, Australian Government Publishing Service, Canberra, 72–137.
  • O’Gorman, J.P., 2019. Elasmosaurid phylogeny and paleobiogeography, with a reappraisal of Aphrosaurus furlongi from the Maastrichtian of the Moreno Formation. Journal of Vertebrate Paleontology 39, e1692025.
  • Ochev, V.G., 1966. Systematics and phylogeny of capitosauroid labyrinthodonts. Izdatel'stvo Saratovskogo Universiteta, Saratov 184, 73–87. (in Russian)
  • Olson, E.C., 1947. The Family Diadectidae and its bearing on the classification of reptiles. Fieldiana: Geology 11, 1–53.
  • Osborn, H.F., 1903. The reptilian subclasses Diapsida and Synapsida and the early history of the Diaptosauria. Memoirs of the American Museum of Natural History 1, 451–507.
  • Osborn, H.F., 1923. Two Lower Cretaceous dinosaurs of Mongolia. American Museum Novitates 95, 1–10.
  • Otero, R.A., 2016. Taxonomic reassessment of Hydralmosaurus as Styxosaurus: new insights on the elasmosaurid neck evolution throughout the Cretaceous. PeerJ 4, e1777.
  • Owen, R., 1840. Report on British fossil reptiles. Report of the Ninth Meeting of the British Association for the Advancement of Science, held at Birmingham, August 1839, 43–126.
  • Owen, R., 1842. Report on British fossil reptiles. Part II. Report of the Eleventh Meeting of the British Association for the Advancement of Science, held at Plymouth, July 1841, 60–204.
  • Owen, R., 1855. Description of the cranium of a labyrinthodont reptile, Brachyops laticeps, from Mangali, Central India. Quarterly Journal of the Geological Society of London 11, 37–39.
  • Owen, R., 1860. On the orders of fossil Reptilia and their distribution in time. Report of the Twenty-ninth Meeting of the British Association for the Advancement of Science, held at Aberdeen in September 1859 29, 153–166.
  • Owen, R., 1876. Descriptive and illustrated catalogue of the fossil Reptilia of South Africa in the collection of the British Museum. Taylor and Francis, London, 87 pp.
  • Owen, R., 1882. On an extinct chelonian reptile (Notochelys costata, Owen), from Australia. Quarterly Journal of the Geological Society of London 38, 178–183.
  • Parrington, F.R., 1935. On Prolacerta broomi, gen. et sp. n. and the origin of lizards. Annals and Magazine of Natural History 16, 197–205.
  • Partridge, A.D., 2006. Jurassic–Early Cretaceous spore-pollen and dinocyst zonations for Australia. In Australian Mesozoic and Cenozoic Palynology Zonations–updated to the 2004 Geologic Time Scale. Monteil, E., ed., Geoscience Australia Record 2006/23, CD-ROM.
  • Pawley, K. & Warren, A., 2005. A terrestrial stereospondyl from the Lower Triassic of South Africa: the postcranial skeleton of Lydekkerina huxleyi (Amphibia: Temnospondyli). Palaeontology 48, 281–298.
  • Pêgas, R.V., Holgado, B. & Leal, M.E.C., 2021. On Targaryendraco wiedenrothi gen. nov. (Pterodactyloidea, Pteranodontoidea, Lanceodontia) and recognition of a new cosmopolitan lineage of Cretaceous toothed pterodactyloids. Historical Biology 33, 1266–1280.
  • Pentland, A.H., Vickers-Rich, P., Rich, T.H., Rigby, S.L. & Poropat, S.F., 2023. Oldest pterosaur remains from Australia: evidence from the Lower Cretaceous (lower Albian) Eumeralla Formation of Victoria. Historical Biology. https://doi.org/10.1080/08912963.2023.2201827
  • Pentland, A.H. & Poropat, S.F., 2023. A review of the Jurassic and Cretaceous Gondwanan pterosaur record. Gondwana Research 119, 341–383.
  • Pentland, A.H. & Poropat, S.F., 2019. Reappraisal of Mythunga camara Molnar & Thulborn, 2007 (Pterosauria, Pterodactyloidea, Anhangueria) from the upper Albian Toolebuc Formation of Queensland, Australia. Cretaceous Research 93, 151–169.
  • Pentland, A.H., Poropat, S.F., Tischler, T.R., Sloan, T., Elliott, R.A., Elliott, H.A., Elliott, J.A. & Elliott, D.A., 2019. Ferrodraco lentoni gen. et sp. nov., a new ornithocheirid pterosaur from the Winton Formation (Cenomanian–lower Turonian) of Queensland, Australia. Scientific Reports 9, 13454.
  • Pentland, A.H., Poropat, S.F., White, M.A., Rigby, S.L., Bevitt, J.J., Duncan, R.J., Sloan, T., Elliott, R.A., Elliott, H.A., Elliott, J.A. & Elliott, D.A., 2022b. The osteology of Ferrodraco lentoni, an anhanguerid pterosaur from the mid-Cretaceous of Australia. Journal of Vertebrate Paleontology 41, e2038182.
  • Pentland, A.H., Poropat, S.F., White, M.A., Rigby, S.L., Vickers-Rich, P., Rich, T.H. & Elliott, D.A., 2022a. New anhanguerian (Pterosauria: Pterodactyloidea) remains from the Early Cretaceous of Queensland, Australia. Alcheringa 46, 188–197.
  • Pepperell, J. & Grigg, G., 1974. A labyrinthodont trackway from the Mid-Triassic near Sydney, New South Wales. Proceedings of the Linnean Society of New South Wales 99, 54–56.
  • Percival, I.G., Meakin, N.S., Sherwin, L., Vanderlaan, T.A. & Flitcroft, P.A., 2012. Permian fossils and palaeoenvironments of the northern Sydney Basin, New South Wales. Quarterly Notes of the Geological Survey of New South Wales 138, 1–22.
  • Persson, P.O., 1960. Lower Cretaceous plesiosaurians (Rept.) from Australia. Lunds Universitets Årsskrift 56, 1–23.
  • Persson, P.O., 1982. Elasmosaurid skull from the Lower Cretaceous of Queensland (Reptilia: Sauropterygia). Memoirs of the Queensland Museum 20, 647–655.
  • Phillips, J., 1871. Geology of Oxford and the Valley of the Thames. Clarendon Press, Oxford, 529 pp.
  • Pian, R., Archer, M., Hand, S.J., Beck, R.M.D. & Cody, A., 2016. The upper dentition and relationships of the enigmatic Australian Cretaceous mammal Kollikodon ritchiei. Memoirs of Museum Victoria 74, 97–105.
  • Pledge, N.S., 2013. First South Australian labyrinthodont: a possible chigutisaurid stereospondyl amphibian from the Late Triassic at Leigh Creek. Transactions of the Royal Society of South Australia 137, 127–134.
  • Plieninger, F., 1901. Beiträge zur Kenntnis der Flugsaurier. Palaeontographica 48, 65–90.
  • Poole, K.E., 2022. Phylogeny of iguanodontian dinosaurs and the evolution of quadrupedality. Palaeontologia Electronica 25, a30.
  • Porfiri, J.D., Juárez Valieri, R.D., Santos, D.D.D. & Lamanna, M.C., 2018. A new megaraptoran theropod dinosaur from the Upper Cretaceous Bajo de la Carpa Formation of northwestern Patagonia. Cretaceous Research 89, 302–319.
  • Poropat, S.F., Mannion, P.D., Rigby, S.L., Duncan, R.J., Pentland, A.H., Bevitt, J.J., Sloan, T. & Elliott, D.A., 2023. A nearly complete skull of the sauropod dinosaur Diamantinasaurus matildae from the Upper Cretaceous Winton Formation of Australia and implications for the early evolution of titanosaurs. Royal Society Open Science 10, 221618.
  • Poropat, S.F., Frauenfelder, T.G., Mannion, P.D., Rigby, S.L., Pentland, A.H., Sloan, T. & Elliott, D.A., 2022. Sauropod dinosaur teeth from the lower Upper Cretaceous Winton Formation of Queensland, Australia, and the global record of early titanosauriforms. Royal Society Open Science 9, 220381.
  • Poropat, S.F., Kundrát, M., Mannion, P.D., Upchurch, P., Tischler, T.R. & Elliott, D.A., 2021a. Second specimen of the Late Cretaceous sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on skull and neck evolution in early titanosaurs and the biogeographic origins of Australian dinosaur faunas. Zoological Journal of the Linnean Society 192, 610–674.
  • Poropat, S.F., Mannion, P.D., Upchurch, P., Hocknull, S.A., Kear, B.P. & Elliott, D.A., 2015a. Reassessment of the non-titanosaurian somphospondylan Wintonotitan wattsi (Dinosauria: Sauropoda: Titanosauriformes) from the mid-Cretaceous Winton Formation, Queensland, Australia. Papers in Palaeontology 1, 59–106.
  • Poropat, S.F., Mannion, P.D., Upchurch, P., Hocknull, S.A., Kear, B.P., Kundrát, M., Tischler, T.R., Sloan, T., Sinapius, G.H.K., Elliott, J.A. & Elliott, D.A., 2016. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography. Scientific Reports 6, 34467.
  • Poropat, S.F., Mannion, P.D., Upchurch, P., Tischler, T.R., Sloan, T., Sinapius, G.H.K., Elliott, J.A. & Elliott, D.A., 2020b. Osteology of the wide-hipped titanosaurian sauropod dinosaur Savannasaurus elliottorum from the Upper Cretaceous Winton Formation of Queensland, Australia. Journal of Vertebrate Paleontology 40, e1786836.
  • Poropat, S.F., Martin, S.K., Tosolini, A.-M.P., Wagstaff, B.E., Bean, L.B., Kear, B.P., Vickers-Rich, P. & Rich, T.H., 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia – an overview of research to date. Alcheringa 42, 157–229.
  • Poropat, S.F., Nair, J.P., Syme, C.E., Mannion, P.D., Upchurch, P., Hocknull, S.A., Cook, A.G., Tischler, T.R. & Holland, T., 2017. Reappraisal of Austrosaurus mckillopi Longman, 1933 from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur. Alcheringa 41, 543–580.
  • Poropat, S.F., Pentland, A.H., Duncan, R.J., Bevitt, J.J., Vickers-Rich, P. & Rich, T.H., 2020a. First elaphrosaurine theropod dinosaur (Ceratosauria: Noasauridae) from Australia – a cervical vertebra from the Early Cretaceous of Victoria. Gondwana Research 84, 284–295.
  • Poropat, S.F., Upchurch, P., Mannion, P.D., Hocknull, S.A., Kear, B.P., Sloan, T., Sinapius, G.H.K. & Elliott, D.A., 2015b. Revision of the sauropod dinosaur Diamantinasaurus matildae Hocknull et al. 2009 from the middle Cretaceous of Australia: implications for Gondwanan titanosauriform dispersal. Gondwana Research 27, 995–1033.
  • Poropat, S.F., White, M.A., Vickers-Rich, P. & Rich, T.H., 2019. New megaraptorid (Dinosauria: Theropoda) remains from the Lower Cretaceous Eumeralla Formation of Cape Otway, Victoria, Australia. Journal of Vertebrate Paleontology 39, e1666273.
  • Poropat, S.F., White, M.A., Ziegler, T., Pentland, A.H., Rigby, S.L., Duncan, R.J., Sloan, T. & Elliott, D.A., 2021b. A diverse Late Cretaceous vertebrate tracksite from the Winton Formation of Queensland, Australia. PeerJ 9, e11544.
  • Pridmore, P.A., Rich, T.H., Vickers-Rich, P. & Gambaryan, P.P., 2005. A tachyglossid-like humerus from the Early Cretaceous of south-eastern Australia. Journal of Mammalian Evolution 12, 359–378.
  • Rauhut, O.W.M., 2005. Post-cranial remains of ‘coelurosaurs’ (Dinosauria, Theropoda) from the Late Jurassic of Tanzania. Geological Magazine 142, 97–107.
  • Rauhut, O.W.M., 2012. A reappraisal of a putative record of abelisauroid theropod dinosaur from the Middle Jurassic of England. Proceedings of the Geologists’ Association 123, 779–786.
  • Rauhut, O.W.M., Martin, T., Ortiz-Jaureguizar, E. & Puerta, P., 2002. A Jurassic mammal from South America. Nature 416, 165–168.
  • Raven, T.J., Barrett, P.M., Joyce, C.B. & Maidment, S.C.R., 2023. The phylogenetic relationships and evolutionary history of the armoured dinosaurs (Ornithischia: Thyreophora). Journal of Systematic Palaeontology 21. https://doi.org/10.1080/14772019.2023.2205433
  • Retallack, G.J., 1996. Early Triassic therapsid footprints from the Sydney Basin, Australia. Alcheringa 20, 301–314.
  • Richards, T.M., Stumkat, P.E. & Salisbury, S.W., 2021. A new species of crested pterosaur (Pterodactyloidea, Anhangueridae) from the Lower Cretaceous (upper Albian) of Richmond, North West Queensland, Australia. Journal of Vertebrate Paleontology, 2021, e1946068.
  • Rich, T.H.V., Flannery, T.F. & Archer, M., 1989. A second Cretaceous mammalian specimen from Lightning Ridge, N.S.W., Australia. Alcheringa 13, 85–88.
  • Rich, T.H., Flannery, T.F., Evans, A.R., White, M., Ziegler, T., Maguire, A., Poropat, S., Trusler, P. & Vickers-Rich, P., 2020b. Multiple hypotheses about two mammalian upper dentitions from the Early Cretaceous of Australia. Alcheringa 44, 528–536.
  • Rich, T.H., Flannery, T.F., Trusler, P., Kool, L., Van Klaveren, N.A. & Vickers-Rich, P., 2001b. A second tribosphenic mammal from the Mesozoic of Australia. Records of the Queen Victoria Museum 110, 1–9.
  • Rich, T.H., Flannery, T.F., Trusler, P., Kool, L., Van Klaveren, N.A. & Vickers-Rich, P., 2002. Evidence that monotremes and ausktribosphenids are not sistergroups. Journal of Vertebrate Paleontology 22, 466–469.
  • Rich, T.H., Flannery, T.F., Trusler, P. & Vickers-Rich, P., 2001a. Corroboration of the Garden of Eden Hypothesis. In Faunal and floral migrations and evolution in SE Asia-Australasia. Metcalfe, I., Smith, J.M.B., Morwood, M. & Davidson I., eds, A.A. Balkema, Lisse, 315–324.
  • Rich, T.H., Flannery, T.F. & Vickers-Rich, P., 1998. Alleged Cretaceous placental from down under: Reply. Lethaia 31, 346–348.
  • Rich, T.H., Flannery, T.F. & Vickers-Rich, P., 2020a. Evidence for a remarkably large toothed-monotreme from the Early Cretaceous of Lightning Ridge, NSW, Australia. In Biological Consequences of Plate Tectonics: New Perspectives on Post-Gondwana Break-up—A Tribute to Ashok Sahni. Prasad, G.V.R. & Patnaik, R., eds, Springer Nature Switzerland AG, Cham, Switzerland, 77–81.
  • Rich, T.H., Galton, P.M. & Vickers-Rich, P., 2010. The holotype individual of the ornithopod dinosaur Leaellynasaura amicagraphica Rich & Rich, 1989 (late Early Cretaceous, Victoria, Australia). Alcheringa 34, 385–396.
  • Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R. & Vickers-Rich, P., 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, 475–501.
  • Rich, T.H., Hopson, J.A., Musser, A.M., Flannery, T.F. & Vickers-Rich, P., 2005a. Independent origins of middle ear bones in monotremes and therians. Science 307, 910–914.
  • Rich, T.H., Hopson, J.A., Musser, A.M., Flannery, T.F. & Vickers-Rich, P., 2005b. Response to comments on ‘Independent origins of middle ear bones in monotremes and therians’. Science 309, 1492c.
  • Rich, T.H., Kear, B.P., Sinclair, R., Chinnery, B., McHugh, M.L. & Vickers-Rich, P., 2014. Serendipaceratops arthurcclarkei Rich & Vickers-Rich, 2003 is an Australian Early Cretaceous ceratopsian. Alcheringa 38, 456–479.
  • Rich, T.H., Krause, D.W., Trusler, P., White, M.A., Kool, L., Evans, A.R., Morton, S. & Vickers-Rich, P., 2022a. Second specimen of Corriebaatar marywaltersae from the Lower Cretaceous of Australia confirms its multituberculate affinities. Acta Palaeolontologica Polonica 67, 115–134.
  • Rich, T.H., Lowery, M., Hall, M., Kool, L., Bevitt, J., White, M. & Vickers-Rich, P., 2022b. A new Cretaceous fossil mammal locality from the Bass Coast of southeastern Australia. Alcheringa 46, 349–353.
  • Rich, T.H. & Rich, P.V., 1988. A juvenile dinosaur brain from Australia. National Geographic Research 4, 148.
  • Rich, T.H.V. & Rich, P.V., 1989. Polar dinosaurs and biotas of the Early Cretaceous of southeastern Australia. National Geographic Research 5, 15–53.
  • Rich, T.H., Trusler, P., Kool, L., Pickering, D., Evans, A., Siu, K., Maksimenko, A., Kundrát, M., Gostling, N.J., Morton, S. & Vickers-Rich, P., 2020c. A third, remarkably small, tribosphenic mammal from the Mesozoic of Australia. In Biological Consequences of Plate Tectonics: New Perspectives on Post-Gondwana Break-up—A Tribute to Ashok Sahni. Prasad, G.V.R. & Patnaik, R., eds, Springer Nature Switzerland AG, Cham, Switzerland, 67–75.
  • Rich, T.H. & Vickers-Rich, P., 1994. Neoceratopsians and ornithomimosaurs: dinosaurs of Gondwana origin? National Geographic Research and Exploration 10, 129–131.
  • Rich, T.H. & Vickers-Rich, P., 2003a. A Century of Australian Dinosaurs. Queen Victoria Museum and Art Gallery and Monash Science Centre, Launceston, 124 pp.
  • Rich, T.H. & Vickers-Rich, P., 2003b. Protoceratopsian? ulnae from Australia. Records of the Queen Victoria Museum 113, 1–12.
  • Rich, T.H. & Vickers-Rich, P., 2004. Diversity of Early Cretaceous mammals from Victoria, Australia. Bulletin of the American Museum of Natural History 285, 36–53.
  • Rich, T.H. & Vickers-Rich, P., 2020. Dinosaurs of Darkness (Second Edition). Indiana University Press, Bloomington & Indianapolis, 222 pp.
  • Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L. & Van Klaveren, N., 1997. A tribosphenic mammal from the Mesozoic of Australia. Science 278, 1438–1442.
  • Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L. & Van Klaveren, N., 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum 106, 1–34.
  • Rich, T.H., Vickers-Rich, P., Flannery, T.F., Kear, B.P., Cantrill, D.J., Komarower, P., Kool, L., Pickering, D., Trusler, P., Morton, S., Van Klaveren, N. & Fitzgerald, E.M.G., 2009b. An Australian multituberculate and its palaeobiogeographic implications. Acta Palaeontologica Polonica 54, 1–6.
  • Rich, T.H., Vickers-Rich, P., Flannery, T.F., Pickering, D., Kool, L., Tait, A.M. & Fitzgerald, E.M.G., 2009a. A fourth Australian Mesozoic mammal locality. In Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin, 65. Albright, L.B., III, ed., Museum of Northern Arizona, Flagstaff, Arizona, 677–681.
  • Rich, T.H., Vickers-Rich, P., Trusler, P., Flannery, T.F., Cifelli, R., Constantine, A., Kool, L. & Van Klaveren, N., 2001c. Monotreme nature of the Australian Early Cretaceous mammal Teinolophos. Acta Palaeontologica Polonica 46, 113–118.
  • Rich, T.H. & Vickers-Rich, P., 1999. The Hypsilophodontidae from southeastern Australia. In Proceedings of the Second Gondwanan Dinosaur Symposium: National Science Museum Monograph, 15. Tomida, Y., Rich, T.H. & Vickers-Rich, P., eds, National Science Museum, Tokyo, Japan, 167–180.
  • Rigby, S.L., Poropat, S.F., Mannion, P.D., Pentland, A.H., Sloan, T., Rumbold, S.J., Webster, C.B. & Elliott, D.A., 2022. A juvenile Diamantinasaurus matildae (Dinosauria: Titanosauria) from the Upper Cretaceous Winton Formation of Queensland, Australia, with implications for sauropod ontogenetic growth. Journal of Vertebrate Paleontology 41, e2047991.
  • Riguetti, F., Pereda-Suberbiola, X., Ponce, D., Salgado, L., Apesteguía, S., Rozadilla, S. & Arbour, V., 2022. A new small-bodied ankylosaurian dinosaur from the Upper Cretaceous of North Patagonia (Río Negro Province, Argentina). Journal of Systematic Palaeontology 20, 2137441.
  • Ristevski, J., Willis, P.M.A., Yates, A.M., White, M.A., Hart, L.J., Stein, M.D., Price, G.J. & Salisbury, S.W., 2023. Migrations, diversifications and extinctions: the evolutionary history of crocodyliforms in Australasia. Alcheringa. https://doi.org/10.1080/03115518.2023.2201319
  • Rix, A., 2023. The Dunstan deals: how some geological treasures left Australia. Proceedings of the Royal Society of Queensland 132.
  • Rodrigues, T. & Kellner, A.W.A., 2013. Taxonomic review of the Ornithocheirus complex (Pterosauria) from the Cretaceous of England. ZooKeys 308, 1–112.
  • Romer, A.S., 1947. Review of the Labyrinthodontia. Bulletin of the Museum of Comparative Zoology 99, 1–368.
  • Romer, A.S., 1956. Osteology of the Reptiles. University of Chicago Press, Chicago, 772 pp.
  • Romer, A.S., 1971. Tetrapod vertebrates and Gondwanaland. In Second Gondwana Symposium: Proceedings and Papers. Council for Scientific and Industrial Research, Pretoria, South Africa, 111–124.
  • Romer, A.S. & Lewis, A.D., 1959. A mounted skeleton of the giant plesiosaur Kronosaurus. Breviora 112, 1–15.
  • Romilio, A., 2021a. Evidence of ornithischian activity from the Lower Jurassic (Hettangian–Sinemurian) Precipice Sandstone, Callide Basin, Queensland, Australia—preliminary findings. Historical Biology 33, 3041–3045.
  • Romilio, A., 2021b. Additional notes on the Mount Morgan dinosaur tracks from the Lower Jurassic (Sinemurian) Razorback Beds, Queensland, Australia. Historical Biology 33, 2005–2007.
  • Romilio, A., Dick, R., Skinner, H. & Millar, J., 2021c. Archival data provides insights into the ambiguous track-maker gait from the Lower Jurassic (Sinemurian) Razorback beds, Queensland, Australia: evidence of theropod quadrupedalism? Historical Biology 33, 1573–1579.
  • Romilio, A. & Godfrey, T. 2022. A new dinosaur tracksite from the Lower Cretaceous (Aptian–Albian) Eumeralla Formation of Wattle Hill, Victoria; a preliminary investigation. Historical Biology 34, 2315–2323.
  • Romilio, A., Klein, H., Jannel, A. & Salisbury, S.W., 2021b. Saurischian dinosaur tracks from the Upper Triassic of southern Queensland: possible evidence for Australia’s earliest sauropodomorph trackmaker. Historical Biology 34, 1834–1843.
  • Romilio, A. & Salisbury, S.W., 2011. A reassessment of large theropod dinosaur tracks from the mid-Cretaceous (late Albian–Cenomanian) Winton Formation of Lark Quarry, central-western Queensland, Australia: A case for mistaken identity. Cretaceous Research 32, 135–142.
  • Romilio, A. & Salisbury, S.W., 2014. Large dinosaurian tracks from the Upper Cretaceous (Cenomanian–Turonian) portion of the Winton Formation, Lark Quarry, central-western Queensland, Australia: 3D photogrammetric analysis renders the ‘stampede trigger’ scenario unlikely. Cretaceous Research 51, 186–207.
  • Romilio, A., Salisbury, S.W. & Jannel, A., 2021a. Footprints of large theropod dinosaurs in the Middle–Upper Jurassic (lower Callovian–lower Tithonian) Walloon Coal Measures of southern Queensland, Australia. Historical Biology 33, 2135–2146.
  • Romilio, A., Tucker, R.T. & Salisbury, S.W., 2013. Reevaluation of the Lark Quarry dinosaur Tracksite (late Albian–Cenomanian Winton Formation, central-western Queensland, Australia): no longer a stampede? Journal of Vertebrate Paleontology 33, 102–120.
  • Rougier, G.W., Forasiepi, A.M. & Martinelli, A.G., 2005. Comment on "independent origins of middle ear bones in monotremes and therians" (II). Science 309, 1492b.
  • Rowe, T., 1988. Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology 8, 241–264.
  • Rowe, T., Rich, T.H., Vickers-Rich, P., Springer, M. & Woodburne, M.O., 2008. The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proceedings of the National Academy of Sciences 105, 1238–1242.
  • Rozadilla, S., Agnolín, F., Manabe, M., Tsuihiji, T. & Novas, F.E., 2021. Ornithischian remains from the Chorrillo Formation (Upper Cretaceous), southern Patagonia, Argentina, and their implications on ornithischian paleobiogeography in the Southern Hemisphere. Cretaceous Research 125, 104881.
  • Rozefelds, A.C. & Warren, A., 2011. Lepidostrobus muelleri Johnston is a skull fragment of a temnospondyl amphibian. Alcheringa 35, 459–462.
  • Rozefelds, A.C., Warren, A., Whitfield, A. & Bull, S., 2011. New evidence of large Permo-Triassic dicynodonts (Synapsida) from Australia. Journal of Vertebrate Paleontology 31, 1158–1162.
  • Rühle von Lilienstern, H., 1944. Eine Dicynodontierfährte aus dem Chirotheriumsandstein von Hessberg bei Hildburghausen (aufbewahrt im Palaeontologischen Museum des Jardin des Plantes in Paris). Paläontologische Zeitschrift 23, 368–385.
  • Rusconi, C., 1948. Nuevos Laberintodontes del Triásico de Mendoza. Revista del Museo de Historia Natural de Mendoza 2, 225–229
  • Ruta, M., Pisani, D., Lloyd, G.T. & Benton, M.J., 2007. A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society Series B 274, 3087–3095
  • Sachs, S., 2004. Redescription of Woolungasaurus glendowerensis (Plesiosauria: Elasmosauridae) from the Lower Cretaceous of northeast Queensland. Memoirs of the Queensland Museum 49, 215–233.
  • Sachs, S., 2005. Tuarangisaurus australis sp. nov. (Plesiosauria: Elasmosauridae) from the Lower Cretaceous of northeastern Queensland, with additional notes on the phylogeny of the Elasmosauridae. Memoirs of the Queensland Museum 50, 425–440.
  • Sachs, S., Hornung, J.J. & Kear, B.P., 2017. A new basal elasmosaurid (Sauropterygia: Plesiosauria) from the Lower Cretaceous of Germany. Journal of Vertebrate Paleontology 37, e1301945.
  • Sachs, S. & Kear, B.P., 2017. Redescription of the elasmosaurid plesiosaurian Libonectes atlasense from the Upper Cretaceous of Morocco. Cretaceous Research 74, 205–222.
  • Sachs, S., Lindgren, J. & Kear, B.P., 2018. Reassessment of the Styxosaurus snowii (Williston, 1890) holotype specimen and its implications for elasmosaurid plesiosaurian interrelationships. Alcheringa 42, 560–574.
  • Sachs, S., Lindgren, J., Madzia, D. & Kear, B.P., 2021. Cranial osteology of the mid-Cretaceous elasmosaurid Thalassomedon hanningtoni from the Western Interior Seaway of North America. Cretaceous Research 123, 104769.
  • Salgado, L., Coria, R.A. & Calvo, J.O., 1997. Evolution of titanosaurid sauropods. I: Phylogenetic analysis based on the postcranial evidence. Ameghiniana 34, 3–32.
  • Salgado, L. & Gasparini, Z., 2006. Reappraisal of an ankylosaurian dinosaur from the Upper Cretaceous of James Ross Island (Antarctica). Geodiversitas 28, 119–135.
  • Salisbury, S.W., Frey, E., Martill, D.M. & Buchy, M.-C., 2003. A new crocodilian from the Lower Cretaceous Crato Formation of north-eastern Brazil. Palaeontographica Abteilung A 270, 3–47.
  • Salisbury, S., Molnar, R.E., Frey, E. & Willis, P.M.A., 2006. The origin of modern crocodyliforms: new evidence from the Cretaceous of Australia. Proceedings of the Royal Society B 273, 2439–2448.
  • Salisbury, S.W. & Romilio, A., 2019. Dinosaurian tracks and related geological features of the Reddell Point—Entrance Point area, Broome, Western Australia; palaeontological survey as part of the 2018 Broome Safe Boat Harbour site assessment process. Shire of Broome, Broome, Western Australia. viii + 42 pp.
  • Salisbury, S.W., Romilio, A., Herne, M.C., Tucker, R.T. & Nair, J.P., 2017. The dinosaurian ichnofauna of the Lower Cretaceous (Valanginian–Barremian) Broome Sandstone of the Walmadany Area (James Price Point), Dampier Peninsula, Western Australia. Society of Vertebrate Paleontology Memoir 16, 1–152.
  • Säve-Söderbergh, G., 1935. On the dermal bones of the head in labyrinthodont stegocephalians and primitive Reptilia with special reference to Eotriassic stegocephalians from East Greenland. Meddelelser om Grønland 98, 1–211.
  • Scanlon, J.D., 2006. Dinosaurs and other Mesozoic reptiles of Australasia. In Evolution and Biogeography of Australasian Vertebrates. Merrick, J.R., Archer, M., Hickey, G.M. & Lee, M.S.Y., eds, Auscipub, Sydney, Australia, 265–290.
  • Scanlon, J.D. & Hocknull, S.A., 2008. A dolichosaurid lizard from the latest Albian (mid-Cretaceous) Winton Formation, Queensland, Australia. In Proceedings of the Second Mosasaur Meeting. Fort Hays Studies, Special Issue 3. Everhart, M.J., ed., Fort Hays State University, Hays, Kansas, 131–136.
  • Schoch, R.R., 2013. The evolution of major temnospondyl clades: an inclusive phylogenetic analysis. Journal of Systematic Palaeontology 11, 673–705.
  • Schoch, R.R., 2019. Osteology of the temnospondyl Trematosaurus brauni Burmeister, 1849 from the Middle Buntsandstein of Bernburg, Germany. Palaeodiversity 12, 41–63.
  • Schoch, R.R. & Milner, A.R., 2000. Stereospondyli: Stem-Stereospondyli, Rhinescuchidae, Rhytidostea, Trematosauroidea, Capitosauridea. Verlag Dr. Friedrich Pfeil, Munich, 203 pp.
  • Seeley, H.G., 1870. The Ornithosauria: an elementary study of the bones of pterodactyles. Deighton, Bell, and Co., Cambridge, 135 pp.
  • Seeley, H.G., 1874. Note on some of the generic modifications of the plesiosaurian pectoral arch. Quarterly Journal of the Geological Society of London 30, 436–449.
  • Seeley, H.G., 1887. On the classification of the fossil animals commonly named Dinosauria. Proceedings of the Royal Society of London 43, 165–171.
  • Seeley, H.G., 1891. On Agrosaurus macgillivrayi, a saurischian reptile from the N.E. coast of Australia. Quarterly Journal of the Geological Society of London 47, 164–165.
  • Sengupta, D.P., 1995. Chigutisaurid temnospondyls from the Late Triassic of India and a review of the family Chigutisauridae. Palaeontology 38, 313–339.
  • Sereno, P.C., Larsson, H.C.E., Sidor, C.A. & Gado, B., 2001. The giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science 294, 1516–1519.
  • Sereno, P.C., 1986. Phylogeny of the bird-hipped dinosaurs (order Ornithischia). National Geographic Research 2, 234–256.
  • Serratos, D.J., Druckenmiller, P.S. & Benson, R.B.J., 2017. A new elasmosaurid (Sauropterygia, Plesiosauria) from the Bearpaw Shale (Late Cretaceous, Maastrichtian) of Montana demonstrates multiple evolutionary reductions of neck length within Elasmosauridae. Journal of Vertebrate Paleontology 37, e1278608.
  • Sherwin, L., 1969a. Amphibian footprints as an indication of the depth of deposition of the Hawkesbury Sandstone. In Abstracts for the Fourth Symposium on Advances in the Study of the Sydney Basin. Department of Geology, University of Newcastle, Newcastle, New South Wales, 69–70.
  • Sherwin, L., 1969b. Amphibian footprints in Hawkesbury Sandstone. Quarry, Mine and Pit 10, 6–8.
  • Shishkin, M.A., 1973. The morphology of the early Amphibia and some problems of the lower tetrapod evolution. Trudy Paleontologicheskogo Instituta Akademiy Nauk S.S.S.R. 137, 1–257. (in Russian)
  • Shishkin, M.A., 1991. A labyrinthodont from the Late Jurassic of Mongolia. Paleontological Journal 1991, 81–94.
  • Slodownik, M.A., Mörs, T. & Kear, B.P., 2021. Reassessment of the Early Triassic trematosaurid temnospondyl Tertrema acuta from the Arctic island of Spitsbergen. Journal of Vertebrate Paleontology 41, e1900209.
  • Smith Woodward, A., 1906. On a tooth of Ceratodus and a dinosaurian claw from the Lower Jurassic of Victoria, Australia. Annals and Magazine of Natural History 18 (series 7), 1–3.
  • Smith Woodward, A., 1909. On a new labyrinthodont from oil shale at Airly. Records of the Geological Survey of New South Wales 8, 317–319.
  • Smith Woodward, A., 1910. On remains of a megalosaurian dinosaur from New South Wales. In Report of the Seventy-ninth Meeting of the British Association for the Advancement of Science. John Murray, London, 482–483.
  • Smith, E.T., 2010. Early Cretaceous chelids from Lightning Ridge, New South Wales. Alcheringa 34, 375–384.
  • Smith, A.S. & Dyke, G.J., 2008. The skull of the giant predatory pliosaur Rhomaleosaurus cramptoni: implications for plesiosaur phylogenetics. Naturwissenschaften 95, 975–980.
  • Smith, T.E., Edwards, D.S., Kelman, A.P., Laurie, J.R., le Poidevi, S., Nicoll, R.S., Mory, A.J., Haines, P.W. & Hocking, R.M., 2013. Canning Basin Biozonation and Stratigraphy, 2013, Chart 31. Commonwealth of Australia (Geosciences Australia), Canberra, Australia, 389 pp.
  • Smith, E.T. & Kear, B.P., 2013. Spoochelys ormondea gen. et sp. nov., an archaic meiolaniid-like turtle from the Early Cretaceous of Lightning Ridge, Australia. In Morphology and Evolution of Turtles. Brinkman, D.B., Holroyd, P.A. & Gardner, J.D., eds, Springer, Dordrecht, 121–146.
  • Smith, N.D., Makovicky, P.J., Agnolin, F.L., Ezcurra, M.D., Pais, D.F. & Salisbury, S.W., 2008. A Megaraptor-like theropod (Dinosauria: Tetanurae) in Australia: support for faunal exchange across eastern and western Gondwana in the Mid-Cretaceous. Proceedings of the Royal Society B 275, 2085–2093.
  • Smith, E., 2009. Terrestrial and freshwater turtles of Early Cretaceous Australia. Ph.D. thesis. University of New South Wales, Sydney, 390 pp. (unpublished)
  • Sobczak, K., La Croix, A.D., Esterle, J., Hayes, P., Holl, H.G., Ciesiolka, R., Crowley, J.L. & Allen, C.M., 2022. Geochronology and sediment provenance of the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia: implications for the palaeogeography of eastern Gondwana. Gondwana Research 111, 189–208.
  • Sookias, R.B., Budd, G.E. & Kear, B.P., 2013. Mesozoic fossil sustainability: synoptic case studies of resource management. GFF 135, 131–143.
  • Soto-Acuña, S., Vargas, A.O., Kaluza, J., Leppe, M., Botelho, J.F., Palma-Liberona, J., Simon-Gutstein, C., Fernández, R.A., Ortiz, H., Milla, V., Aravena, B., Manríquez, L.M.E., Alarcón-Muñoz, J., Pino, J.P., Trevisan, C., Mansilla, H., Hinojosa, L.F., Muñoz-Walther, V. & Rubilar-Rogers, D., 2021. Bizarre tail weaponry in a transitional ankylosaur from subantarctic Chile. Nature 600, 259–263.
  • Spiekman, S.N.F., 2018. A new specimen of Prolacerta broomi from the lower Fremouw Formation (Early Triassic) of Antarctica, its biogeographical implications and a taxonomic revision. Scientific Reports 8, 17996.
  • Spiekman, S.N.F., Fraser, N.C. & Scheyer, T.M., 2021. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other “protorosaurs”, and its implications for the early evolution of stem archosaurs. PeerJ 9, e11143.
  • Staines, H.R.E. & Woods, J.T., 1964. Recent discovery of Triassic dinosaur footprints in Queensland. Australian Journal of Science 27, 55.
  • Steel, R., 1970. Saurischia. In Handbuch der Paläoherpetologie. Kuhn, O., ed., Gustav Fischer Verlag, Stuttgart, 1–87.
  • Stephens, W.J., 1887a. Note on a labyrinthodont fossil from Cockatoo Island, Port Jackson. Proceedings of the Linnean Society of New South Wales (Second Series) 1, 931–940.
  • Stephens, W.J., 1887b. On the Biloela labyrinthodont (second notice). Proceedings of the Linnean Society of New South Wales (Second Series) 1, 1113–1121.
  • Stephens, W.J., 1887c. On some additional labyrinthodont fossils from the Hawkesbury sandstones of New South Wales. Proceedings of the Linnean Society of New South Wales (Second Series) 1, 1175–1192.
  • Stephens, W.J., 1888. On some additional labyrinthodont fossils from the Hawkesbury Sandstone of New South Wales. Second note on Platyceps wilkinsoni. Proceedings of the Linnean Society of New South Wales (Second Series) 2, 156–158.
  • Sterli, J., 2015. A review of the fossil record of Gondwanan turtles of the clade Meiolaniformes. Bulletin of the Peabody Museum of Natural History 56, 21–45.
  • Sterli, J. & de la Fuente, M.S., 2013. New evidence from the Palaeocene of Patagonia (Argentina) on the evolution and palaeo-biogeography of Meiolaniformes (Testudinata, new taxon name). Journal of Systematic Palaeontology 11, 835–852.
  • Steyer, J.S. & Damiani, R., 2005. A giant brachyopoid temnospondyl from the Upper Triassic or Lower Jurassic of Lesotho. Bulletin de la Société Géologique de France 176, 243–248.
  • Syme, C.E. & Salisbury, S.W., 2018. Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland. Royal Society Open Science 5, 171651.
  • Syme, C.E., Welsh, K.J., Roberts, E.M. & Salisbury, S.W., 2016. Depositional environment of the Lower Cretaceous (upper Albian) Winton Formation at Isisford, central-western Queensland, inferred from sandstone concretions. Journal of Sedimentary Research 86, 1067–1082
  • Talent, J.A., Duncan, P.M. & Handby, P.L., 1966. Early Cretaceous feathers from Victoria. Emu 64, 81–86.
  • Teichert, C. & Matheson, R.S., 1944. Upper Cretaceous ichthyosaurian and plesiosaurian remains from Western Australia. Australian Journal of Science 6, 167–170.
  • Tembe, G & Siddiqui, S., 2014. Applications of computed tomography to fossil conservation and education Collection Forum 28, 47–62.
  • Thomas, B.M., Willink, R.J., Grice, K., Twitchett, R.J., Purcell, R.R., Archbold, N.W., George, A.D., Tye, S., Alexander, R., Foster, C.B. & Barber, C.J., 2004. Unique marine Permian–Triassic boundary section from Western Australia. Australian Journal of Earth Sciences 51, 423–430.
  • Thompson, R.S., Parish, J.C., Maidment, S.C.R. & Barrett, P.M., 2012. Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora). Journal of Systematic Palaeontology 10, 301–312.
  • Thorn, K.M., Poropat, S.F., Bell, P.R., Hocknull, S.A., Kear, B.P., Palci, A., Salisbury, S.W. & Yates, A.M., 2021. Checklist of the Fossil Reptile and Amphibian Species of Australia. https://www.australasianpalaeontologists.org/databases
  • Thulborn, R.A., 1979. A proterosuchian thecodont from the Rewan Formation of Queensland. Memoirs of the Queensland Museum 19, 331–344.
  • Thulborn, R.A., 1983a. A mammal-like reptile from Australia. Nature 303, 330–331.
  • Thulborn, R.A., 1983b. First mammal-like reptile from Australia (reply). Nature 306, 209.
  • Thulborn, R.A., 1985. Rhoetosaurus brownei Longman, 1926: the giant Queensland dinosaur. In Kadimakara: Extinct Vertebrates of Australia. Rich, P.V., van Tets, G.F. & Knight, F., eds, Princeton University Press, Princeton, New Jersey, 166–171.
  • Thulborn, R.A., 1986a. The Australian Triassic reptile Tasmaniosaurus triassicus (Thecodontia: Proterosuchia). Journal of Vertebrate Paleontology 6, 123–142.
  • Thulborn, R.A., 1986b. Triassic amphibian and reptile tracks of the Brisbane–Ipswich area. In A field guide to sediments and fossils of the Ipswich Basin. Fordham, B.G., ed., Geological Society of Australia, Queensland Division, Brisbane, Australia, 20–24.
  • Thulborn, R.A., 1990. Mammal-like reptiles in Australia. Memoirs of the Queensland Museum 28, 169.
  • Thulborn, R.A., 1994. Ornithopod dinosaur tracks from the Lower Jurassic of Queensland. Alcheringa 18, 247–258.
  • Thulborn, R.A., 2013. Lark Quarry revisited: a critique of methods used to identify a large dinosaurian track-maker in the Winton Formation (Albian–Cenomanian), western Queensland, Australia. Alcheringa 37, 312–330.
  • Thulborn, T., 1997. Dinosaur tracks at Oakleigh Colliery. Queensland Government Mining Journal 98, 42–43.
  • Thulborn, T., 2001. History and nomenclature of the theropod dinosaur tracks Bueckeburgichnus and Megalosauripus. Ichnos 8, 207–222.
  • Thulborn, T., 2003. Comment on “Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary”. Science 301, 169b.
  • Thulborn, T., 2012. Impact of sauropod dinosaurs on lagoonal substrates in the Broome Sandstone (Lower Cretaceous), Western Australia. PLoS One 7, e36208.
  • Thulborn, T., 2017. Behaviour of dinosaurian track-makers in the Winton Formation (Cretaceous, Albian–Cenomanian) at Lark Quarry, western Queensland, Australia: running or swimming? Ichnos 24, 1–18.
  • Thulborn, T., Hamley, T. & Foulkes, P., 1994. Preliminary report on sauropod dinosaur tracks in the Broome Sandstone (Lower Cretaceous) of Western Australia. Gaia 10, 85–94.
  • Thulborn, T., 2000. Australia’s earliest theropods: footprint evidence in the Ipswich Coal Measures (Upper Triassic) of Queensland. In Aspects of Theropod Paleobiology; Gaia, 15. Pérez-Moreno, B.P., Holtz, T.R., Jr., Sanz, J.L. & Moratalla, J.J., eds, 301–311.
  • Thulborn, T. & Turner, S., 1993. An elasmosaur bitten by a pliosaur. Modern Geology 18, 489–501.
  • Thulborn, R.A. & Wade, M., 1979. Dinosaur stampede in the Cretaceous of Queensland. Lethaia 12, 275–279.
  • Thulborn, R.A. & Wade, M., 1984. Dinosaur trackways in the Winton Formation (mid-Cretaceous) of Queensland. Memoirs of the Queensland Museum 21, 413–517.
  • Thulborn, R.A. & Wade, M., 1989. A footprint as a history of movement. In Dinosaur Tracks and Traces. Gillette D.D. & Lockley, M.G., eds, Cambridge University Press, Cambridge, U.K., 51–56.
  • Thulborn, R.A. & Warren, A.A., 1980. Early Jurassic plesiosaurs from Australia. Nature 285, 224–225.
  • Todd, C.N., Roberts, E.M., Knutsen, E.M., Rozefelds, A.C., Huang, H.-Q. & Spandler, C., 2019. Refined age and geological context of two of Australia's most important Jurassic vertebrate taxa (Rhoetosaurus brownei and Siderops kehli), Queensland. Gondwana Research 76, 19–25.
  • Travouillon, K.J., Jackson, S., Beck, R.M.D., Louys, J., Cramb, J., Gillespie, A., Black, K., Hand, S., Archer, M., Kear, B.P., Hocknull, S.A., Phillips, M., McDowell, M., Fitzgerald, E., Brewer, P. & Price. G.J., 2021. Checklist of the Fossil Mammal Species of Australia and New Guinea. https://www.australasianpalaeontologists.org/databases
  • Tripathi, C., 1969. Fossil labyrinthodonts from the Panchet Series of the Indian Gondwanas. Palaeontologia Indica 38, 1–45.
  • Tucker, R.T., Roberts, E.M., Hu, Y., Kemp, A.I.S. & Salisbury, S.W., 2013. Detrital zircon age constraints for the Winton Formation, Queensland: contextualizing Australia’s Late Cretaceous dinosaur faunas. Gondwana Research 24, 767–779.
  • Turner, S., Bean, L.B., Dettmann, M., McKellar, J.L., McLoughlin, S. & Thulborn, T., 2009. Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation. GFF 131, 49–70.
  • Turner, A.H. & Pritchard, A.C., 2015. The monophyly of Susisuchidae (Crocodyliformes) and its phylogenetic placement in Neosuchia. PeerJ 3, e759.
  • Twelvetrees, W.H. & Petterd, W.F., 1900. Note on the humeri of Tasmanian labyrinthodonts. Papers and Proceedings of the Royal Society of Tasmania 1898–1899, 27–31.
  • Unwin, D.M., Lü, J. & Bakhurina, N.N., 2000. On the systematic and stratigraphic significance of pterosaurs from the Lower Cretaceous Yixian Formation (Jehol Group) of Liaoning, China. Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 3, 181–206.
  • Upchurch, P., 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions: Biological Sciences 349, 365–390.
  • Upchurch, P., Barrett, P.M. & Dodson, P., 2004. Sauropoda. In The Dinosauria: Second Edition. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 259–322.
  • Vajda, V., McLoughlin, S., Mays, C., Frank, T.D., Fielding, C.R., Tevyaw, A., Lehsten, V., Bocking, M. & Nicoll, R.S., 2020. End-Permian (252 Mya) deforestation, wildfires and flooding – an ancient biotic crisis with lessons for the present. Earth and Planetary Science Letters 529, 115875.
  • Vakil, V., Webb, G.E. & Cook, A.G., 2020. Can vertebral remains differentiate more than one species of Australian Cretaceous ichthyosaur?. Alcheringa: An Australasian Journal of Palaeontology 44, 537–554.
  • Vakil, V., Webb, G. & Cook, A., 2021. Taxonomic utility of Early Cretaceous Australian plesiosaurian vertebrae. Palaeontologia Electronica 24, a30.
  • Vickaryous, M.K., Maryańska, T. & Weishampel, D.B., 2004. Ankylosauria. In The Dinosauria: Second Edition. Weishampel, D.B., Dodson, P. & Osmólska, H., eds, University of California Press, Berkeley, 363–392.
  • Vickers-Rich, P., Rich, T.H., McNamara, G.C. & Milner, A., 1999. Is Agrosaurus macgillivrayi Australia’s oldest dinosaur? Records of the Western Australian Museum, Supplement 57, 191–200.
  • Vine, R.R. & Paine, A.G.L., 1974. Hughenden, Queensland. 1:250000 geological series explanatory notes. Bureau of Mineral Resources Geology and Geophysics SF/55-1.
  • Wade, M., 1984. Platypterygius australis, an Australian Cretaceous ichthyosaur. Lethaia 17, 99–113.
  • Wade, M., 1990. A review of the Australian Cretaceous longipinnate ichthyosaur Platypterygius, (Ichthyosauria, Ichthyopterygia). Memoirs of the Queensland Museum 28, 115–137.
  • Wade, M., 1989. The stance of dinosaurs and the Cossack Dancer Syndrome. In Dinosaur Tracks and Traces. Gillette, D.D. & Lockley, M.G., eds, Cambridge University Press, Cambridge, 73–82.
  • Wagstaff, B.E., Gallagher, S.J., Hall, W.M., Korasidis, V.A., Rich, T.H., Seegets-Villiers, D.E. & Vickers-Rich, P., 2020. Palynological-age determination of Early Cretaceous vertebrate-bearing beds along the south Victorian coast of Australia and implications for the spore-pollen biostratigraphy. Alcheringa 44, 460–474.
  • Waldman, M., 1970. A third specimen of a Lower Cretaceous feather from Victoria, Australia. Condor 72, 377.
  • Walker, A.D., 1964. Triassic reptiles from the Elgin area: Ornithosuchus and the origin of carnosaurs. Philosophical Transactions of the Royal Society of London, Series B 248, 53–134.
  • Walker, A.D., 1970. A revision of the Jurassic reptile Hallopus victor (Marsh), with remarks on the classification of crocodiles. Philosophical Transactions of the Royal Society of London, Series B 257, 323–372.
  • Walker, C.A., 1981. New subclass of birds from the Cretaceous of South America. Nature 292, 51–53.
  • Warren, A., 1972. Triassic amphibians and reptiles of Australia in relation to Gondwanaland. Australian Natural History 17, 279–283.
  • Warren, A., 1977. Jurassic labyrinthodont. Nature 265, 436–437.
  • Warren, A., 1981a. A horned member of the labyrinthodont superfamily Brachyopoidea from the Early Triassic of Queensland. Alcheringa 5, 273–288.
  • Warren, A., 1985a. Triassic Australian plagiosauroid. Journal of Paleontology 59, 236–241.
  • Warren, A., 1991. Australian fossil amphibians. In Vertebrate Palaeontology of Australasia. Vickers-Rich, P., Monaghan, J.M., Baird, R.F. & Rich, T.H., eds, Pioneer Design Studio, Melbourne, 569–590.
  • Warren, A., 2012. The South African stereospondyl Microposaurus from the Middle Triassic of the Sydney Basin, Australia. Journal of Vertebrate Paleontology 32, 538–544.
  • Warren, A.A., 1980. Parotosuchus from the Early Triassic of Queensland and Western Australia. Alcheringa 4, 25–36.
  • Warren, A.A., 1981b. The lower jaw of the labyrinthodont family Brachyopidae. Memoirs of the Queensland Museum 20, 285–289.
  • Warren, A.A., 1982. Australian fossil amphibians. In Fossil Vertebrate Record of Australasia. Rich, P.V. & Thompson, E.M., eds, Monash University Press, Clayton, Victoria, 145–158.
  • Warren, A.A., 1985b. Two long-snouted temnospondyls (Amphibia, Labyrinthodontia) from the Triassic of Queensland. Alcheringa 9, 293–295.
  • Warren, A.A., 1997. A tetrapod fauna from the Permian of the Sydney Basin. Records of the Australian Museum 49, 25–33.
  • Warren, J.W., 1969. A fossil chelonian of probably Lower Cretaceous age from Victoria, Australia. Memoirs of the National Museum of Victoria 29, 23–28.
  • Warren, A. & Black, T., 1985. A new rhytidosteid (Amphibia, Labyrinthodontia) from the Early Triassic Arcadia Formation of Queensland, Australia, and the relationships of Triassic temnospondyls. Journal of Vertebrate Paleontology 5, 303–327.
  • Warren, A., Damiani, R. & Sengupta, D.P., 2009. Unique stereospondyl mandibles from the Early Triassic Panchet Formation of India and the Arcadia Formation of Australia. Special Papers in Palaeontology 81, 161–173.
  • Warren, A.A., Damiani, R. & Yates, A.M., 2006. The South African stereospondyl Lydekkerina huxleyi (Tetrapoda, Temnospondyli) from the Lower Triassic of Australia. Geological Magazine 143, 877–886.
  • Warren, A.A. & Hutchinson, M.N., 1983. The last labyrinthodont? A new brachyopoid (Amphibia, Temnospondyli) from the Early Jurassic Evergreen Formation of Queensland, Australia. Philosophical Transactions of the Royal Society of London B 303, 1–62.
  • Warren, A.A. & Hutchinson, M.N., 1987. The skeleton of a new hornless rhytidosteid (Amphibia, Temnospondyli). Alcheringa 11, 291–302.
  • Warren, A.A. & Hutchinson, M.N., 1988. A new capitosaurid amphibian from the Early Triassic of Queensland, and the ontogeny of the capitosaur skull. Palaeontology 31, 857–876.
  • Warren, A.A. & Hutchinson, M.N., 1990a. The young ones – small temnospondyls from the Arcadia Formation. Memoirs of the Queensland Museum 28, 103–106.
  • Warren, A.A. & Hutchinson, M.N., 1990b. Lapillopsis, a new genus of temnospondyl amphibians from the Early Triassic of Queensland. Alcheringa 14, 149–158.
  • Warren, A.A., Kool, L., Cleeland, M., Rich, T.H. & Vickers-Rich, P., 1991. An Early Cretaceous labyrinthodont. Alcheringa 15, 327–332.
  • Warren, A. & Marsicano, C., 1998. Revision of the Brachyopidae (Temnospondyli) from the Triassic of the Sydney, Carnarvon and Tasmania basins, Australia. Alcheringa 22, 329–342.
  • Warren, A. & Marsicano, C., 2000a. Banksiops, a replacement name for Banksia townrowi (Amphibia, Temnospondyli). Journal of Vertebrate Paleontology 20, 186.
  • Warren, A.A. & Marsicano, C.A., 2000b. A phylogeny of the Brachyopoidea (Temnospondyli, Stereospondyli). Journal of Vertebrate Paleontology 20, 462–483.
  • Warren, A., Rich, T.H. & Vickers-Rich, P., 1997. The last last labyrinthodonts? Palaeontographica Abteilung A 247, 1–24.
  • Warren, A., Rozefelds, A.C. & Bull, S., 2011. Tupilakosaur-like vertebrae in Bothriceps australis, an Australian brachyopid stereospondyl. Journal of Vertebrate Paleontology 31, 738–753.
  • Warren, A.A. & Schroeder, N., 1995. Changes in the capitosaur skull with growth: an extension of the growth series of Parotosuchus aliciae (Amphibia, Temnospondyli) with comments on the otic area of capitosaurs. Alcheringa 19, 41–46.
  • Watson, D.M.S., 1918. Notes on the nomenclature of the Carboniferous, Permo-Carboniferous, and Permian rocks of the Southern Hemisphere. Report of the British Association for the Advancement of Science 1917, 113–115.
  • Watson, D.M.S., 1919. The structure, evolution and origin of the Amphibia. The "orders" Rachitomi and Stereospondyli. Philosophical Transactions of the Royal Society of London B 209, 1–73.
  • Watson, D.M.S., 1956. The brachyopid labyrinthodonts. Bulletin of the British Museum (Natural History), Geology 2, 315–392.
  • Watson, D.M.S., 1958. A new labyrinthodont (Paracyclotosaurus) from the Upper Trias of New South Wales. Bulletin of the British Museum (Natural History), Geology 3, 233–263.
  • Watson, D.M.S., 1962. The evolution of the labyrinthodonts. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 245, 219–265.
  • Weishampel, D., Csiki-Sava, Z. & Norman, D., 2003. Osteology and phylogeny of Zalmoxes (n. g.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania Journal of Systematic Palaeontology 1, 65–123.
  • Welles, S.P., 1943. Elasmosaurid plesiosaurs with a description of the new material from California and Colorado. Memoirs of the University of California 13, 125–254.
  • Welles, S.P., 1962. A new species of elasmosaur from the Aptian of Colombia and a review of the Cretaceous plesiosaurs. University of California Publications in Geological Sciences 44, 1–89.
  • Welles, S.P., 1971, Dinosaur footprints from the Kayenta Formation of northern Arizona: Plateau 44, 27–38.
  • Welles, S.P., 1983. Allosaurus (Saurischia: Theropoda) not yet in Australia. Journal of Paleontology 57, 196.
  • Welles, S.P., 1993. A review of the lonchorhynchine trematosaurs (Labyrinthodontia), and a description of a new genus and species from the Lower Moenkopi Formation of Arizona. PaleoBios 14, 1–24.
  • Welles, S.P. & Cosgriff, J.W., 1965. A revision of the labyrinthodont family Capitosauridae, and a description of Parotosaurus peabodyi, n. sp. from the Wupatki Member of the Moenkopi Formation of northern Arizona. University of California Publications in Geological Sciences 54, 1–148.
  • Welles, S.P. & Estes, R., 1969. Hadrokkosaurus bradyi from the Upper Moenkopi Formation of Arizona; with a review of the brachyopid labyrinthodonts. University of California Publications in Geological Sciences 84, 1–61.
  • Wells, A.T. & O’Brien, P.E., 1994. Lithostratigraphic framework of the Clarence-Moreton Basin. In Geology and petroleum potential of the Clarence-Moreton Basin, New South Wales and Queensland. Australian Geological Survey Organisation Bulletin 241. Wells, A.T. & O’Brien, P.E., eds, Australian Government Publishing Service, Canberra, 4–47.
  • White, J.M., Barron, A., McCurry, M.R. & Denham, T., 2023. Investigating gut contents of the leptocleidian plesiosaur Umoonasaurus demoscyllus using micro-CT imaging. Alcheringa. https://doi.org/10.1080/03115518.2023.2194944
  • White, T.E., 1935. On the skull of Kronosaurus queenslandicus Longman. Occasional Papers of the Boston Society of Natural History 8, 219–228.
  • White, M.A., Bell, P.R., Campione, N.E., Sansalone, G., Brougham, T., Bevitt, J.J., Molnar, R.E., Cook, A.G., Wroe, S. & Elliott, D.A., 2022. Abdominal contents reveal Cretaceous crocodyliforms ate dinosaurs. Gondwana Research 106, 281–302.
  • White, M.A., Bell, P.R., Cook, A.G., Barnes, D.G., Tischler, T.R., Bassam, B.J. & Elliott, D.A., 2015b. Forearm range of motion in Australovenator wintonensis (Theropoda, Megaraptoridae). PLoS One 10, e0137709.
  • White, M.A., Bell, P.R., Cook, A.G., Poropat, S.F. & Elliott, D.A., 2015a. The dentary of Australovenator wintonensis (Theropoda, Megaraptoridae); implications for megaraptorid dentition. PeerJ 3, e1512.
  • White, M.A., Bell, P.R., Poropat, S.F., Pentland, A.H., Rigby, S.L., Cook, A.G., Sloan, T. & Elliott, D.A., 2020. New theropod remains and implications for megaraptorid diversity in the Winton Formation (lower Upper Cretaceous), Queensland, Australia. Royal Society Open Science 7, 191462.
  • White, M.A., Benson, R.B.J., Tischler, T.R., Hocknull, S.A., Cook, A.G., Barnes, D.G., Poropat, S.F., Wooldridge, S.J., Sloan, T., Sinapius, G.H.K. & Elliott, D.A., 2013b. New Australovenator hind limb elements pertaining to the holotype reveal the most complete neovenatorid leg. PLoS One 8, e68649.
  • White, M.A., Cook, A.G., Hocknull, S.A., Sloan, T., Sinapius, G.H.K. & Elliott, D.A., 2012. New forearm elements discovered of holotype specimen Australovenator wintonensis from Winton, Queensland, Australia. PLoS One 7, e39364.
  • White, M.A., Cook, A.G., Klinkhamer, A.J. & Elliott, D.A., 2016. The pes of Australovenator wintonensis (Theropoda: Megaraptoridae): analysis of the pedal range of motion and biological restoration. PeerJ 4, e2312.
  • White, M.A., Falkingham, P.L., Cook, A.G., Hocknull, S.A. & Elliott, D.A., 2013a. Morphological comparisons of metacarpal I for Australovenator wintonensis and Rapator ornitholestoides: implications for their taxonomic relationships. Alcheringa 37, 435–441.
  • Whitehouse, F.W., 1924. Dimitobelidae – A new family of Cretaceous belemnites. Geological Magazine 61, 410–416.
  • Williamson, T., 2006. Systematics and biostratigraphy of the Australian Early Cretaceous belemnites with contributions to the timescale and palaeoenvironmental assessment of the Australian Early Cretaceous system derived from stable isotopes. Ph.D. thesis. James Cook University, Townsville, Australia, 209 pp. (unpublished)
  • Williston, S.W., 1908. North American plesiosaurs: Trinacromerum. Journal of Geology 16, 715–735.
  • Williston, S.W., 1925. Osteology of the Reptiles. University of Chicago Press, Chicago, 772 pp.
  • Wilson, J.A., 2002. Sauropod dinosaur phylogeny: Critique and cladistic analysis. Zoological Journal of the Linnean Society 136, 215–275.
  • Wilson, J.A. & Sereno, P.C., 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5, 68 pp.
  • Wiman, C. 1914. Über die Stegocephalen aus der Trias Spitzbergens. Bulletin of the Geological Institution of the University of Upsala 13, 1–34.
  • Witzmann, F. & Schoch, R.R., 2022. The larval brachyopid Platycepsion wilkinsoni from the Triassic of New South Wales provides insight into the stereospondyl life cycle. Journal of Paleontology 96, 1447–1460.
  • Woodburne, M.O., 2003. Monotremes as pretribosphenic mammals. Journal of Mammalian Evolution 10, 195–248.
  • Woodburne, M.O., Rich, T.H. & Springer, M.S., 2003. The evolution of tribospheny and the antiquity of mammalian clades. Molecular Phylogenetics and Evolution 28, 360–385.
  • Woodward, H.N., Rich, T.H., Chinsamy, A. & Vickers-Rich, P., 2011. Growth dynamics of Australia’s polar dinosaurs. PLoS One 6, e23339.
  • Woodward, H.N., Rich, T.H. & Vickers-Rich, P., 2018. The bone microstructure of polar “hypsilophodontid” dinosaurs from Victoria, Australia. Scientific Reports 8, 1162.
  • Worthy, T.H. & Nguyen, J.M.T., 2020. An annotated checklist of the fossil birds of Australia. Transactions of the Royal Society of South Australia 144, 66–108.
  • Worthy, T.H., Nguyen, J.M.T. & Travouillon, K.J., 2021. Checklist of the Fossil Bird Species of Australia. https://www.australasianpalaeontologists.org/databases
  • Xing, L.-d., Harris, J.D., Dong, Z.-m., Lin, Y.-l., Chen, W., Guo, S.-b. & Ji, Q., 2009b. Ornithopod (Dinosauria: Ornithischia) tracks from the Upper Cretaceous Zhutian Formation in the Nanxiong Basin, Guangdong, China and general observations on large Chinese ornithopod footprints. Geological Bulletin of China 28, 829–843.
  • Xing, L.-d., Harris, J.D., Sekiya, T., Fujita, M. & Dong, Z.-m., 2009a. Discovery of dinosaur footprints from the Lower Jurassic Lufeng Formation of Yunnan Province, China and new observations on Changpeipus. Geological Bulletin of China 28, 16–29.
  • Xu, Y., Jiang, S. & Wang, X., 2022. A new istiodactylid pterosaur, Lingyuanopterus camposi gen. et sp. nov., from the Jiufotang Formation ot west Liaoning, China. PeerJ 10, e13819.
  • Yang, Y., Wu, W., Dieudonné, P.-E. & Godefroit, P., 2020. A new basal ornithopod dinosaur from the Lower Cretaceous of China. PeerJ 8, e9832.
  • Yates, A.M., 1999. The Lapillopsidae: a new family of small temnospondyls from the Early Triassic of Australia. Journal of Vertebrate Paleontology 19, 302–320.
  • Yates, A.M., 2000. A new tiny rhytidosteid (Temnospondyli: Stereospondyli) from the Early Triassic of Australia and the possibility of hidden temnospondyl diversity. Journal of Vertebrate Paleontology 20, 484–489.
  • Yates, A.M., & Warren, A.A., 2000. The phylogeny of the ‘higher’temnospondyls (Vertebrata: Choanata) and its implications for the monophyly and origins of the Stereospondyli. Zoological Journal of the Linnean Society 128, 77–121.
  • Young, C.-C., 1960. Fossil footprints in China. Vertebrata PalAsiatica 4, 53–66.
  • Zammit, M., 2010. A review of Australasian ichthyosaurs. Alcheringa 34, 281–292.
  • Zammit, M., Norris, R.M. & Kear, B.P., 2010. The Australian Cretaceous ichthyosaur Platypterygius australis: a description and review of postcranial remains. Journal of Vertebrate Paleontology 30, 1726–1735.
  • Zittel, K.A.v., 1887–1890. Handbuch der Palaeontologie, 1. Abtheilung. Palaeozoologie, III. Band. Vertebrata (Pisces, Amphibia, Aves). R. Oldenbourg, München und Leipzig, 900 pp.

Appendix

Table A1. Chronostratigraphically arranged inventory of Australian Mesozoic temnospondyl occurrences.

Table A2. Chronostratigraphically arranged inventory of Australian parareptilian and basal neodiapsidan occurrences.

Table A3. Chronostratigraphically arranged inventory of Australian ichthyosauromorphan occurrences.

Table A4. Chronostratigraphically arranged inventory of Australian Mesozoic lepidosaurian occurrences.

Table A5. Chronostratigraphically arranged inventory of Australian sauropterygian occurrences.

Table A6. Chronostratigraphically arranged inventory of Australian Mesozoic testudinatan occurrences.

Table A7. Chronostratigraphically arranged inventory of Australian Mesozoic non-archosaurian archosauromorph occurrences.

Table A8. Chronostratigraphically arranged inventory of Australian Mesozoic crocodylomorph occurrences.

Table A9. Chronostratigraphically arranged inventory of Australian Mesozoic pterosaur occurrences.

Table A10. Chronostratigraphically arranged inventory of Australian Mesozoic dinosaur occurrences (including Avialae).

Table A11. Chronostratigraphically arranged inventory of Australian Mesozoic synapsid occurrences (including Mammalia).

Table A12. Chronostratigraphically arranged inventory of Australian end-Permian and Mesozoic tetrapod ichnofossil occurrences.