140
Views
2
CrossRef citations to date
0
Altmetric
Articles

Defence-related biochemical changes by elicitor of malformation pathogen, Fusarium mangiferae, in mango

, &
Pages 1356-1368 | Received 19 Feb 2012, Accepted 22 Feb 2012, Published online: 05 Apr 2012
 

Abstract

Malformation of mango (Mangifera indica L.) induced by Fusarium moniliforme var. subglutinans is a plant disease of international importance. The paper reports the downstream defence responses at the initial stage in a susceptible host (cultivar Amrapali) after treatment with biotic (isolated from the pathogen cell wall) (BEL) and abiotic (salicylic acid, SA) elicitors, and inoculation of vegetative buds with the pathogen (IVB). The SA was further tested to induce resistance in field trials. The inoculation and application of elicitors increased β-1, 3 glucanase that causes lysis of fungal hyphae by many folds. Hydrogen peroxide (H2O2) (active oxygen species) that induces hypersensitive cell death was reduced to the minimum level after treatment with BEL. The reduction of H2O2 in the inoculated vegetative buds was also substantial; however, comparatively less with SA treatment. Consequently, there was no hypersensitive cell death in the malformed mango. Salicylic acid that enhances H2O2 content by suppressing H2O2-degradation by catalase, increased marginally with the SA treatment and in the IVB, but reduced with the BEL. The reduction of SA in BEL-treated buds concomitantly reduced its H2O2 content. The activity of catalase, suppressor of resistance mechanism, was reduced in all the treatments, but the reduction was not enough to arrest H2O2-degradation. Magiferin (1, 3, 6, 7-tetrahdroxyxanthone C2-β-D glucoside), a defence metabolite of mango, increased substantially in all the treatments; maximum with the BEL. A pathogenesis-related (PR) protein of 20 KDa that resists symptom development appeared in all the treatments except the control. But light colour of the spots for the PR-protein indicated low protein accumulation. The maximum accumulation was with the IVB followed by SA and BEL treatments. The amount of total protein reduced considerably in all the treatments. The SA treatment on healthy plants failed to induce defence against malformation. Contrarily, the treatment on malformed seedlings restored normal growth within two months. Hence, SA acted better over the infected plants in presence of the pathogen. Thus, a signal transduction system involving SA and H2O2 remained nonfunctional and enough defence chemicals could not be synthesised. Defence genes that produce phenolic and β-1, 3 glucanase, however, became activated and saved the plants from death although could not prevent symptom manifestations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 471.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.