125
Views
7
CrossRef citations to date
0
Altmetric
Articles

Cuticle-degrading proteases of entomopathogenic fungi: from biochemistry to biological performance

&
Pages 779-794 | Received 01 Jan 2018, Accepted 31 Aug 2018, Published online: 22 Mar 2019
 

Abstract

Entomopathogenic fungi are among the most successful biocontrol agents for preventing economic loss from insects. The identification of virulent species or isolates, the development of formulation technology and the improvement of efficiency are avenues being pursuing by researchers in diverse scientific disciplines. A successful entomopathogenic fungus deploys a combination of mechanical and biochemical processes to overcome the first defensive barrier in insects, the integument. A precise understanding of the mechanisms underlying fungal pathogenicity, particularly the roles of enzymes such as proteases, is essential in order to highlight the potential of entomopathogenic fungi and increase their virulence via genetic modifications. Cuticle-degrading proteases are divided into subtilisin-like (Pr1) and trypsin-like (Pr2) proteases, which are secreted in the initial stages of penetration. The biochemical structure contains the catalytic triad Asp39, His69 and Ser224 in addition to Ca2+ binding sites. Studies have shown a molecular weight of almost 19–47 kDa, an optimal pH of 7–12 and an optimal temperature of 35–45 °C. Different species or isolates of entomopathogenic fungi exhibit differences in the secretion and activity of cuticle-degrading proteases, which may indicate their virulence capacity. Genetic engineering techniques have been developed to create isolates with protease overexpression. Such isolates have significantly higher virulence against the host because they not only ensure fungal penetration but also exhibit direct toxicity to insects.

Acknowledgment

The authors would like to highly appreciate Mary Varcoe to thoroughly revise language of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 471.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.