Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 47, 2012 - Issue 4
82
Views
3
CrossRef citations to date
0
Altmetric
ARTICLES

The aqueous solubility of some herbicidal by-side toxic impurities: Predicted data of the 399 chlorinated trans-azoxybenzene congeners

, &
Pages 275-287 | Received 18 May 2011, Published online: 19 Mar 2012
 

Abstract

The quantitative structure - property relationship (QSPR) and the artificial neural networks (ANNs) methods were used to estimate aqueous solubility (log S and μg/L) of polychlorinated trans-azoxybenzenes (PCt-ABs). These QSPR and ANN models are based on geometry optimalization and quantum-chemical structural descriptors, which were computed on the level of density functional theory (DFT) using B3LYP functional and 6-311++G** basis set in Gaussian 03 software and the semi-empirical quantum chemistry method for property parameterization (RM1) in the molecular orbital package (MOPAC) software. The predicted solubility of PCt-AOBs by RM1 and DFT models and depending on a congener varied within a homologue class between 47-19498 and 371-1738 μg/L for Mono-; 33-11481 and 7.9-3630 μg/L for Di-; 6.1-4786 and 4.7-12882 μg/L for Tri-; 1.3-1174 and 0.3-14791 μg/L for Tetra-; 0.4-646 and 0.1-38904 μg/L for Penta-; 0.1-155 and 0.2-63096 μg/L for Hexa-; 0.2-27 and 0.1-646 μg/L for Hepta-; < 0.1-6.2 and 0.8-282 μg/L for Octa-; 0.6-2.6 and 0.8-12 μg/L for NonaCt-AOBs; and 1.2 and 0.5 μg/L for DecaCt-AOB, respectively. Both computational models used were characterized by good predictive abilities and small errors, while calculations by RM1 method were highly competitive compared to a much more time-consuming and expensive method by DFT.

Acknowledgments

Computations were carried out using the computers in the TASK - Academic Computer Center in Gdańsk. A partial financial support by the Ministry of Science and Higher Education under grant DS/8130-4-0092-1 is acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.