Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 7
231
Views
4
CrossRef citations to date
0
Altmetric
Articles

Modeling the mobility of glyphosate from two contrasting agricultural soils in laboratory column experiments

, ORCID Icon, ORCID Icon, ORCID Icon, , , , & show all
Pages 539-548 | Published online: 02 Jul 2019
 

Abstract

Glyphosate (GLP) currently is one of the most widely used herbicides worldwide. The persistence of GLP and its major metabolite, aminomethylphosphonic acid (AMPA) in the environment has been described by other authors. This study was aimed at comparing the GLP and AMPA behavior in sandy and loamy sand soils after spiking with enhanced (445 µg g−1) concentrations of GLP in herbicide KLINIK® (Nufarm, Austria) and bioaugmentation followed by 40 days weathering and a consistent three-stage leaching in a laboratory column experiment. Soil samples were obtained from mineral topsoil (0–10 cm) within former agricultural lands where soil parent material was formed by glacigenic deposits. The total amount of GLP and AMPA collected during three leaching stages was significantly (p<.05) higher from columns with sandy soil, compared to loamy sand soil. Bioaugmentation resulted in considerably lower concentrations of AMPA in leachates, especially in the sets with sandy soil (p=.01). Leachates were tested using FTIR spectroscopy and Daphnia magna. Statistical analysis of the changes in Ntot, Ctot, K+, Mg2+, Al3+, Ca2+, Mn2+ and Fe3+ concentrations in soils after the leaching experiment revealed that the loamy sand soil was likely to be more sensitive to the addition of GLP and bioaugmentation than sandy soil.

Disclosure statement

No potential conflict of interest has been reported by the authors.

Additional information

Funding

The study was financially funded by the project “Sustainable use of natural resources in the context of climate change” [No. ZD2016 AZ03].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.