Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 12
100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Atrazine adsorption and desorption on functionalized montmorillonite: aluminum-pillared and lithium saturated

, , , &
Pages 980-988 | Published online: 19 Dec 2022
 

Abstract

Atrazine is an herbicide used worldwide, and it is considered a severe environmental contaminant. The present study aims to evaluate the atrazine adsorption in aqueous media in montmorillonite samples which were either in natural state or functionalized through saturation with lithium and pillarization with aluminum by different methods. Montmorillonite saturated with lithium adsorbed significantly more atrazine than the natural montmorillonite sample. Among the samples obtained through the three aluminum-pillarization methods, the mass percentage of adsorbed atrazine was very similar. However, the best combination was the aluminum-pillarization (due to the maintenance of the open interlayer region) and saturation with lithium (due to the significant reduction of the cation exchange capacity of the mineral), because both processes facilitate the interaction of atrazine with the montmorillonite. Another advantage was that the adsorption of atrazine in the pillared and lithium saturated samples had small desorption, which is desirable in the environmental perspective. It is recommended to build filters with aluminum-hydroxy pillared, lithium saturated montmorillonite as an alternative method to rapidly remove atrazine from aqueous media. In addition to the shorter production time, this process resulted in montmorillonite with high occupancy rate and stability of the aluminum-hydroxy pillars.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors declare that all relevant data supporting the findings of this study are included in this article

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.