90
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Coupled Part and Mold Temperature Simulation for Injection Molding Based on Solid Geometry

, &
Pages 741-749 | Published online: 15 Feb 2007
 

Abstract

This paper presents a coupled method that determines the interface temperatures by filling and cooling analyses simultaneously to simulate the mold and part temperature distributions for injection molding. The mold temperature is assumed to be changing and is calculated with melt together at the filling stage instead of keeping constants as is usually done in conventional methods. The mold temperature is first determined with a 3-D finite element method by specifying the heat-flow rate at the interface between mold and part. Then the finite difference approach is employed to solve the melt thermal problem to get melt temperature distributions inside the cavity and the heat-flow rate at the interface. The under-relax scheme is used to correct the boundary condition and to resolve both mold and melt thermal problems until the solutions are convergent. This method can simulate transient and multicycle problems with more complex process conditions. The simulated results agree with experimental data.

ACKNOWLEDGMENTS

This work has been performed as part of Injection Molding in NERC of Zhengzhou University sponsored by National Science Founding (Grant No. 10225211 and Grant No. 10402038) of China. We also appreciate Prof. Chen Shia-Chung and his group for providing the experimental data.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.