202
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Rheological Study of Vegetable Oil Based Hyperbranched Polyurethane/Multi-Walled Carbon Nanotube Nanocomposites

&
Pages 797-803 | Published online: 09 Jun 2011
 

Abstract

Hyperbranched polyurethanes [HBPUs] and vegetable oil based polymer nanocomposites have been drawing an imperative attention for their plentiful advantages across a spectrum of potential applications. This study divulges the rheological behaviors of Mesua ferrea L. seed oil modified HBPU/multiwall carbon nanotube [MWCNT] nanocomposites prepared by in-situ technique. Rheological phase transition behavior was studied at 120°C in the steady shear and oscillation mode. The nanocomposites showed shear thinning behavior in both the modes. The rheological characteristics were dependent on the loading of the nanotube as confirmed from this study. The storage and loss moduli values were higher than the pure HBPU and they showed improved viscosity by nanocomposite formation. The nanocomposites revealed a pseudo–solid-like behavior at relatively low frequencies. The effects of temperature on storage and loss modulus have also been explored. The temperature dependence complex viscosity further described the ease of processibility. It has been tried to establish a structural property relationship of the systems from rheological study.

ACKNOWLEDGMENTS

The authors express their thanks to the financial assistance of DST, India through the Grant No. SR/S3/ME/13/2005-SERC-Engg, dated 9th April, 2007.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.