241
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Latent Heat Enhancement of Paraffin Wax in Poly(divinylbenzene-co-methyl methacrylate) Microcapsule

, , , , &
Pages 779-785 | Published online: 28 May 2015
 

Abstract

The preparation of divinylbenzene (DVB)-methyl methacrylate (MMA) copolymer microcapsule encapsulated Rubitherm27 (RT27) P(DVB-co-MMA)/RT27 used as heat storage material by the microsuspension polymerization was studied to improve the latent heats of the encapsulated RT27 with sufficient polymer shell strength. Percent loading of RT27 and DVB:MMA ratio were optimized. The optimal condition was 30% loading of RT27 and 30:70 (% w/w) of DVB:MMA ratio. The nonspherical microcapsules with a dent having core-shell morphology were obtained. The thermal properties of the encapsulated RT27 in the P(DVB-co-MMA)/RT27 capsules were measured by thermogravimetric analyzer and differential scanning calorimeter. The heats of melting (ΔHm; 153 J/g-RT27) and crystallization (ΔHc; 164 J/g-RT27) of the encapsulated RT27 in the prepared copolymer capsules were higher than those in PDVB and closed to those of bulk RT27 (162 and 168 J/g-RT27 for ΔHm and ΔHc, respectively).

GRAPHICAL ABSTRACT

ACKNOWLEDGMENT

Thanks to Ms. Benjawan Sompong, Ms. Kamolrat Kaewpamorn and Ms. Parichat Aiamkhunthod for valuable discussion of latent heats measurement.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.