255
Views
11
CrossRef citations to date
0
Altmetric
Articles

Influence of Single-Walled Carbon Nanotubes on the Performance of Poly(Azomethine-Ether) Composite Materials

, , &
Pages 1150-1163 | Published online: 20 Oct 2017
 

ABSTRACT

The present work is aimed to fabricate a new set of composite materials containing conducting poly(azomethine-ether) reinforced with single-walled carbon nanotubes in the form of single-walled carbon nanotube/poly(azomethine-ether)1–5 for excellent enhanced thermal as well as conducting behavior of poly(azomethine-ether). Single-walled carbon nanotubes of variable loading have been embedded into conducting poly(azomethine-ether) using in situ polymerization technique. Before attempting the polymerization, 1,3-thiazole established poly(azomethine-ether) and its conformable monomers have been prepared and their chemical structures have been correlated by spectral analyses. Furthermore, ηinh and Mw values for poly(azomethine-ether) were found 0.89 dL g−1 and 39723.6, respectively. The fabricated single-walled carbon nanotube/poly(azomethine-ether)1–5 composites were specified and characterized by wide-angle X-ray diffraction patterns, Fourier transform infrared spectroscopy, thermal behavior, scanning electron microscopy, and transmission electron microscopy characterization techniques. A perfect indicative response for this composite material was estimated by Fourier transform infrared spectra and X-ray diffraction as well. Both techniques displayed all intensive characteristic peaks regarding single-walled carbon nanotubes and poly(azomethine-ether) in the spectra or diffraction pattern for single-walled carbon nanotube/poly(azomethine-ether)1–5. The role of single-walled carbon nanotubes on the performance of poly(azomethine-ether) was considerably examined. Single-walled carbon nanotube/poly(azomethine-ether)1–5 showed relatively higher thermal stability. Single-walled carbon nanotube/poly(azomethine-ether)1 displayed the lowest final composite degradation temperature value (552°C), whereas single-walled carbon nanotube/poly(azomethine-ether)5 displayed the highest value (621°C). T10 and T25 values showed a gradual temperature increased while single-walled carbon nanotubes increased. Single-walled carbon nanotube/poly(azomethine-ether)1 showed the lowest thermal stability and single-walled carbon nanotube/poly(azomethine-ether)5 showed the highest thermal stability between all fabricated products. Furthermore, transmission electron microscopy images showed a prominent increase in single-walled carbon nanotubes diameters (40–60 nm). The conductivity values were significantly increased while single-walled carbon nanotubes content was increased and reached to the semiconductors. ε′ values were also increased in both single-walled carbon nanotube/poly(azomethine-ether)4,5 which have higher single-walled carbon nanotubes content.

GRAPHICAL ABSTRACT

Acknowledgments

The authors, therefore, acknowledge with thanks SABIC and DSR for technical and financial support.

Additional information

Funding

This project was funded by the Saudi Basic Industries Corporation (SABIC), and the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no S/15/325/34.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.