348
Views
16
CrossRef citations to date
0
Altmetric
Articles

Heat Resistant and Mechanical Properties of Biodegradable Poly(Lactic Acid)/Poly(Butylene Succinate) Blends Crosslinked by Polyaryl Polymethylene Isocyanate

, , , &
Pages 1882-1892 | Received 09 Aug 2017, Accepted 26 Feb 2018, Published online: 12 Mar 2018
 

ABSTRACT

This work focus on improving the heat resistant and mechanical properties of poly(lactic acid)/poly(butylene succinate) (PLA/PBS) blends using appropriate contents of polyaryl polymethylene isocyanate (PAPI). Some crosslinked structures were formed according to the gel fraction and rheological results, and the crosslinked structures played the role of nucleation site for the blends. And the Vicat softening temperature of the blends gradually increased with increasing PAPI content. Moreover, the addition of PAPI in the PLA/PBS blends produced a few PLA-PBS copolymers which acted as a compatibilizer and enhanced the interfacial adhesion. Thus, the mechanical properties of PLA were significantly improved.

GRAPHICAL ABSTRACT

Additional information

Funding

This work was supported by the fund of Science and Technology Bureau of Jilin Province of China (No. 20170204012SF), Chinese Science Academy (Changchun Branch) (No. 2017SYHZ0018 and No. 2017SYHZ0016), and National Key Research and Development Program of China (N0. 2016YFC0501402).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 687.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.