400
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of Culture-Independent Detection Method for Beer Spoilage Lactic Acid Bacteria

, ORCID Icon &
Pages 155-161 | Received 15 Aug 2021, Accepted 11 Nov 2021, Published online: 13 Dec 2021
 

Abstract

In microbiological quality control of final beer products, 100–400 ml beer samples are traditionally filtered on a membrane filter, followed by a lengthy culturing process in/on a laboratory medium that usually requires 3–14 days. This study aims to detect beer spoilage lactic acid bacteria (LAB) in a culture-independent fashion, using a direct polymerase chain reaction (PCR) approach. In order to detect a trace level of spoilage LAB in beer products, pressure cycling technology was evaluated to determine if this technology could improve the direct recovery of DNA from membrane filters for PCR detection. In this study, a mixed cellulose ester filter was adopted to allow a larger volume of beer to be filtrated. As a result of the optimization of the DNA extraction process that minimizes the loss of DNA and the effect of PCR inhibitors, 100 (1–10) cells/300 ml beer were successfully detected for beer spoilage LAB. Furthermore, a challenge test using 3,000 ml beer showed that 100 cells of Levilactobacillus (Lactobacillus) brevis were detectable without the negative effects of beer-originated PCR inhibitors, indicating that a trace level of contamination, corresponding to 1 cell in 300 ml of beer products, is detectable. It was also shown that the test was completed in approximately 8 hours. Therefore, this newly developed method is considered to be useful for the culture-independent direct detection of an extremely low level of beer spoilage LAB without a traditional culturing process.

Supplemental data for this article is available online at at.

Acknowledgments

We are grateful to Megumi Ito of Adecco Ltd. for providing technical assistance and useful discussion for this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 324.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.