72
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Nonparametric Bayesian optimal designs for exponential regression model

, &
Pages 1809-1819 | Received 18 Apr 2018, Accepted 05 Mar 2019, Published online: 28 Mar 2019
 

Abstract

Constructing the Bayesian optimal design depends on the choice of a prior distribution for the unknown parameter. Lacking informative or historical knowledge of the parameter, a parametric Bayesian approach cannot be expected in complex statistical problems. In this regard, a nonparametric Bayesian approach can be used, in which random prior distribution is considered. The Dirichlet process is employed as a prior on the space of distribution functions. In this paper, a non-parametric Bayesian approach is incorporated into an optimal design criterion. This method is illustrated by an example.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,090.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.