167
Views
1
CrossRef citations to date
0
Altmetric
Articles

Use of between-within degrees of freedom as an alternative to the Kenward–Roger method for small-sample inference in generalized linear mixed modeling of clustered count data

ORCID Icon &
Pages 5099-5109 | Received 06 Jul 2021, Accepted 14 Sep 2021, Published online: 30 Sep 2021
 

Abstract

Clustered count data, common in health-related research, are routinely analyzed using generalized linear mixed models. There are two well-known challenges in small-sample inference in mixed modeling: bias in the naïve standard error approximation for the empirical best linear unbiased estimator, and lack of clearly defined denominator degrees of freedom. The Kenward–Roger method was designed to address these issues in linear mixed modeling, but neither it nor the simpler option of using between-within denominator degrees of freedom has been thoroughly examined in generalized linear mixed modeling. We compared the Kenward–Roger and between-within methods in two simulation studies. For simulated cluster-randomized trial data, coverage rates for both methods were generally close to the nominal 95% level and never outside 93-97%, even for 5 clusters with an average of 3 observations each. For autocorrelated longitudinal data, between-within intervals were more accurate overall, and under some conditions both the original and improved Kenward–Roger methods behaved erratically. Overall, coverage for Kenward–Roger and between-within intervals was generally adequate, if often conservative. Based on the scenarios examined here, use of between-within degrees of freedom may be a suitable or even preferable alternative to the Kenward–Roger method in some analyses of clustered count data with simple covariance structures.

Data availability statement

Code used to simulate and analyze data is available upon request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,090.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.