292
Views
2
CrossRef citations to date
0
Altmetric
Article

The Pareto type I joint frailty-copula model for clustered bivariate survival data

, , &
Pages 2006-2030 | Received 01 Apr 2021, Accepted 06 Apr 2022, Published online: 02 May 2022
 

Abstract

Clustered bivariate survival data arise in various fields, such as biology and medicine, when individuals in a dataset are clustered and exhibit two survival outcomes. Recently, the joint frailty-copula model was proposed to analyze clustered bivariate survival outcomes by accommodating the between-cluster heterogeneity via a shared frailty term. In this model, researchers fitted the baseline hazard functions via the nonparametric model, the spline model, or the Weibull model. However, when a population has extremely large survival time, the baseline hazard functions are better modeled by a heavy-tailed distribution. In this paper, we adopt the Pareto type I distribution for the joint frailty-copula model, which is one of the most popular heavy-tailed distributions. We show that the moments of the Pareto type I joint frailty copula model diverge to infinity owing to the heavy right-tail. We develop statistical inference methods based on three types of censoring schemes: (i) bivariate random censoring, (ii) semi-competing risks, and (iii) competing risks. We develop maximum likelihood estimation procedures, and make our computational tools available for users. Simulations are performed to check the accuracy of the proposed method. We finally analyze a real dataset for illustration.

MATHEMATICS SUBJECT CLASSIFICATION:

Acknowledgements

We thank reviewers for their helpful comments that improved the manuscript. This research is financially supported by Ministry of Science and Technology, Taiwan, through two grants “MOST 107-2118-M-008-003-MY3” and “MOST 109-2636-E-008-009.”

Electric supplementary materials

Available are R functions for simulating data from and fitting the data to the proposed models, and the R code to reproduce the real data analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,090.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.