239
Views
2
CrossRef citations to date
0
Altmetric
MULTIVARIATE ANALYSIS

Comparing Equal-Tail Probability and Unbiased Confidence Intervals for the Intraclass Correlation Coefficient

Pages 3264-3275 | Received 08 Dec 2006, Accepted 02 Apr 2008, Published online: 03 Sep 2008
 

Abstract

The conventional confidence interval for the intraclass correlation coefficient assumes equal-tail probabilities. In general, the equal-tail probability interval is biased and other interval procedures should be considered. Unbiased confidence intervals for the intraclass correlation coefficient are readily available. The equal-tail probability and unbiased intervals have exact coverage as they are constructed using the pivotal quantity method. In this article, confidence intervals for the intraclass correlation coefficient are built using balanced and unbalanced one-way random effects models. The expected length of confidence intervals serves as a tool to compare the two procedures. The unbiased confidence interval outperforms the equal-tail probability interval if the intraclass correlation coefficient is small and the equal-tail probability interval outperforms the unbiased interval if the intraclass correlation coefficient is large.

Mathematics Subject Classification:

Acknowledgments

The author is very grateful to Dr. Ian Harris for helpful conversations. The author would also like to acknowledge the comments from the referee that improved the presentation of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.