176
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Two-sample tests for sparse high-dimensional binary data

&
Pages 11181-11193 | Received 30 Mar 2016, Accepted 07 Nov 2016, Published online: 07 Aug 2017
 

ABSTRACT

In this article, we study the methods for two-sample hypothesis testing of high-dimensional data coming from a multivariate binary distribution. We test the random projection method and apply an Edgeworth expansion for improvement. Additionally, we propose new statistics which are especially useful for sparse data. We compare the performance of these tests in various scenarios through simulations run in a parallel computing environment. Additionally, we apply these tests to the 20 Newsgroup data showing that our proposed tests have considerably higher power than the others for differentiating groups of news articles with different topics.

MATHEMATICS SUBJECT CLASSIFICATION:

Acknowledgments

We thank an anonymous reviewer for constructive comments and suggestions. The hardware used in the computational studies is part of the UMBC High Performance Computing Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional substantial support from the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.