182
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Computational analysis of the queue with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy

ORCID Icon &
Pages 926-941 | Received 08 Mar 2017, Accepted 24 Dec 2017, Published online: 17 Jan 2018
 

ABSTRACT

This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period immediately with probability p, or continues to provide auxiliary service for the current customers with probability q = 1 − p. While the system resides in the auxiliary service period, it may go to repair period if there is no customer at the epoch of service completion or the occurrence of breakdown. By using the matrix analytic method and the spectral expansion method, we respectively obtain the steady state distribution to make the straightforward computation of performance measures and the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary customer. In addition, some numerical examples are presented to show the impact of parameters on the performance measures.

MATHEMATICS SUBJECT CLASSIFICATION:

Acknowledgements

The authors would like to thank the editor and the referees for the helpful suggestions and comments to improve the quality of this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.