116
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of an unreliable MX/G1G2/1/repeated service queue with delayed repair under randomized vacation policy

&
Pages 5336-5369 | Received 02 Mar 2017, Accepted 13 Aug 2018, Published online: 22 Jan 2019
 

Abstract

In this article we consider an unreliable MX/G/1 queue with two types of general heterogeneous service and optional repeated service subject to server’s break down and delayed repair under randomized vacation policy. We assume that customer arrive to the system according to a compound Poisson process. The server provides two types of general heterogeneous service and a customer can choose either type of service before its service start. After the completion of either type of service, the customer has the further option to repeat the same type of service once again. While the server is working with any types of service or repeated service, it may breakdown at any instant. Further the concept of randomized vacation is also introduced. For this model, we first derive the joint distribution of state of the server and queue size by considering both elapsed and remaining time, which is one of the objective of this article. Next, we derive Laplace Stieltjes transform of busy period distribution. Finally, we obtain some important performance measure and reliability indices of this model.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.