205
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

On the robustness properties for maximum likelihood estimators of parameters in exponential power and generalized T distributions*

ORCID Icon & ORCID Icon
Pages 607-630 | Received 25 Nov 2017, Accepted 02 Nov 2018, Published online: 31 Dec 2018
 

Abstract

Examining the robustness properties of maximum likelihood (ML) estimators of parameters in exponential power and generalized t distributions has been considered together. The well-known asymptotic properties of ML estimators of location, scale and added skewness parameters in these distributions are studied. The ML estimators for location, scale and scale variant (skewness) parameters are represented as an iterative reweighting algorithm (IRA) to compute the estimates of these parameters simultaneously. The artificial data are generated to examine performance of IRA for ML estimators of parameters simultaneously. We make a comparison between these two distributions to test the fitting performance on real data sets. The goodness of fit test and information criteria approve that robustness and fitting performance should be considered together as a key for modeling issue to have the best information from real data sets.

Acknowledgments

We would like to thank sincerely Editor in Chief and Associate Editor and finally referees for their supports and efforts in the process. We also thank to Foreign Language School of Uşak University for editing language.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,069.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.