Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 46, 2022 - Issue 3
139
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic Thiol-Disulfide Homeostasis in Children With β-Thalassemia Trait

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 164-167 | Received 23 Dec 2021, Accepted 18 Feb 2022, Published online: 11 May 2022
 

Abstract

In children with β-thalassemia (β-thal) trait, tissue damage occurs with oxidative stress due to oxygen free radicals and reactive oxygen species (ROS) production. Dynamic thiol-disulfide homeostasis (DTDH) is one of the most important indicators showing the pro-oxidant/antioxidant status in the body. In this study, we aimed to examine the status of DTDH by measuring native thiol, disulfide, and total thiol levels in children with β-thal trait. The study included 40 children with β-thal trait and 30 healthy controls (matched by age and gender). The DTDH parameters were measured by an automated method and results were compared between the groups. The levels of native thiol, total thiol, and disulfide in children with β-thal trait group were statistically significantly higher than the control group (p < 0.001). There was no significant difference in disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol levels between the groups. In addition, there was no correlation between hemoglobin (Hb) and serum ferritin levels with the markers of DTDH in children with β-thal trait. In our study, a significant increase was found in native thiol, total thiol, and disulfide levels in response to oxidative stress in children with β-thal trait compared to the healthy control group. Disulfide levels of the children with β-thal trait were higher than the control group, showing oxidative stress is high in β-thal trait. Accordingly, it increases the native thiol and total thiol capacity as compensation.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,628.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.