124
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Effect of Excipient and Processing Variables on Adhesive Properties and Release Profile of Pentoxifylline From Mucoadhesive Tablets

, &
Pages 377-387 | Published online: 25 Sep 2008
 

ABSTRACT

The bioavailability and onset of action of drugs with high first-pass metabolism can be significantly improved by administration via the sublingual route. The objective of this study was to evaluate the effect of polymer type and tablet compaction parameters on the adhesive properties and drug release profile from mucoadhesive sublingual tablet formulations. Pentoxifylline was selected as the model drug because it has poor oral bioavailability due to extensive first-pass metabolism. Two polymers known to possess mucoadhesive properties, carbomer and hydroxypropyl methyl cellulose (HPMC), were used to prepare the formulations. Tablets were prepared by using direct compression technique and evaluated for in vitro dissolution, drug-excipient interactions, and adhesive properties. In general, there was a decrease in the rate of drug release with an increase in the concentration of polymers. No drug-excipient interactions were evident from differential scanning calorimetry or high-performance liquid chromatography analysis. For the formulations containing HPMC, the force of mucoadhesion increased with an increase in the concentration of polymer; however, for carbomer formulations, no such correlation was observed. Force of mucoadhesion decreased as a function of hydration time in both of the polymers.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.