53
Views
3
CrossRef citations to date
0
Altmetric
Research Article

High-Throughput Evaluation of Non-Swellable Controlled Release Matrix Tablets

, , &
Pages 669-675 | Published online: 25 Sep 2008
 

Abstract

Drug release from controlled-release (CR) matrix tablets involves the permeation and diffusion of water through the system. In this study, a new methodology is proposed for the measurement of water permeation and simultaneous drug release from the inert, non-swellable CR matrix tablet of diltiazem (DLT) and a correlation is made between these two processes. Cylindrical matrices were readily prepared by direct compression of pellets obtained by extrusion-spheronization. Water transport was studied using tritiated water (HTO) as a permeant in a Franz-diffusion cell and simultaneously drug release was measured. Further, dissolution was performed on USP XXI/XXII dissolution apparatus I using demineralized water. Matrices showed a steady water-uptake up to 6 h and the steady state for HTO permeation lasting from 6-h to 24-h Flux of water permeated and flux of drug released correlated well. Thus, HTO permeation through the matrix tablet and the proposed methodology can be used as a tool and/or surrogate marker for evaluation of controlled release matrix tablets. This methodology can be coined as “high-throughput” in terms of amount of labor and resources required in comparison to that of dissolution.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.