381
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Time Domain 1H NMR as a New Method to Monitor Softening of Gelatin and HPMC Capsule Shells

, &
Pages 1165-1173 | Published online: 25 Sep 2008
 

ABSTRACT

Defined mechanical properties are an essential requirement for any pharmaceutical dosage form and this is particularly important in the case of liquid-filled capsules. Changes in the mechanical properties may be induced by exposure of the capsules to humidity or by a shift of the water equilibrium that typically occurs when hydrophilic or amphiphilic fill masses are used, for example, in self-emulsifying drug delivery systems. This study aims to characterize the softening of empty hard gelatin and hydroxypropyl methylcellulose (HPMC) capsules by means of mechanical tests, a Bareiss hardness test, and a stiffness test using a texture analysis method. A benchtop time domain NMR method is applied in addition to characterize the physico-chemical state of water in the capsule shells and to correlate this with the results of the mechanical tests. Hardness and stiffness measurements resulted in corresponding values, showing a softening for both capsule materials in a humid environment, which was most pronounced beyond 60% relative humidity. The capsules made of gelatin exhibited in general higher stiffness and hardness values compared to the HPMC capsules. The physico-chemical state of water in the capsule shells, as probed by a time domain NMR method, was interpreted in terms of a population balance model. Three different water populations were identified that differ in their molecular mobility, as indicated by their characteristic spin-lattice relaxation times, T1. The most loosely bound water fraction dominated in the capsule shells in the range beyond 60% relative humidity. Numerical correlation of the data led to a heuristic equation between the NMR-derived fraction of loosely bound water in the capsule shells and their mechanical stiffness and hardness. Adequate models were obtained for both capsule types, gelatin, and HPMC. Mechanical measurements of pharmaceutical capsules are generally destructive and time consuming. Testing is usually performed in an analytical laboratory, off-line from the manufacturing process, and involves only a small number of samples. Based on the here presented correlation between mechanical stiffness measurements and benchtop time domain NMR data, the latter method may be used as a nondestructive alternative for mechanical testing. This study also opens the possibility to investigate liquid-filled capsules and to establish a process analytical technology (PAT) during manufacturing.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.