145
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Kinetic Analysis of Chlorpropamide Dissolution from Solid Dispersions

&
Pages 63-70 | Published online: 25 Sep 2008
 

ABSTRACT

Solid dispersions (SDs) of chlorpropamide were prepared by the solvent deposition technique using two grades of microcrystalline cellulose as carrier materials with different ratios of drug to carrier. The dissolution rate of chlorpropmide from the SDs was carried out at two physiological pH values of 1.1 and 7.25 simulating gastric and intestinal environments. The dissolution was dependent on the grade, the ratio of drug to carrier and pH. The higher dissolution was observed for more hydrophilic grade of the carrier as well as the higher ratio of carrier to drug. At the higher pH the drug dissolved much faster than the lower pH. X-ray diffraction showed some reduced drug crystallinity in SDs whereas infrared spectroscopy revealed no drug interactions with solvent and the carriers. The enhanced dissolution was attributed to the reduced drug crystallinity, decreased particle size, increased wettability and reduced aggregation of the hydrophobic drug particles. A novel model denoted as reciprocal powered time model with its theoretical justification was employed to analyze the dissolution data and proved to be superior to commonly used models for the analysis of the data. There was a quantitative relation between the model parameter and the ratio of carrier to drug which could be of value in dissolution rate prediction.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.