216
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic Study on Hydration and Drug Release Behavior of Sodium Alginate Compacts

, , &
Pages 667-676 | Published online: 26 Sep 2008
 

ABSTRACT

The influence of sodium alginate viscosity on the dynamics of matrix hydration, solvent front movement, swelling, erosion, and drug release from alginate matrix tablets were examined. The solvent front showed preferential penetration from the radial direction even though matrix swelling showed axial predominance. This study proposed alternative views for the anisotropic behavior of hydrating alginate compacts, namely, formation of gel barrier with different permeability characteristics, tension at the gel-core interface and preferential radial erosion, in addition to an in-depth examination on the contribution of stress relaxation of hydrated polymer as well as core expansion. Alginate matrices demonstrated pH-dependent hydration, swelling and erosion behavior, resulting in pH-dependent drug release mechanisms. Dissolution profiles for alginate matrices of different viscosities were similar in acid but differed upon increase of pH. This was due to the influence of alginate viscosity grade on liquid uptake, erosion and pronounced swelling at near neutral pH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.