151
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Sorbitan Ester Organogels for Transdermal Delivery of Sumatriptan

, , , &
Pages 617-625 | Published online: 26 Sep 2008
 

ABSTRACT

The partial phase behavior, rheological, and drug release characteristics of an organogel (OG) composed of water, isooctane and sorbitan esters, sorbitan monopalmitate (Span-40) and poly(oxyethylene)sorbitan monostearate (Polysorbate-60) were studied. Phase diagrams showed decreasing areas of optically isotropic organogel region depending on the surfactant ratio, Kw and drug incorporation. The nonbirefringent, clear isotropic solution suggested the reverse micellar/microemulsion nature of the organogel without any molecular ordering. The increase in drug concentration in OGs leads to increase in the viscosity and sol-gel transition temperature (Tg). Fractal dimension (df) values calculated for different compositions suggested that the density of the tubular network increases with increasing drug concentration in OGs. The release rate of the drug from OGs was found to be non-Fickian through the dialysis membrane. The permeation rate of sumatriptan from pig skin was 0.231 mg/h/cm2 (781.9 nmol/h/cm2). The study indicates potential of OG as a reservoir system for transdermal drug delivery.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.