298
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Formation, Physical Stability and In Vitro Antimalarial Activity of Dihydroartemisinin Nanosuspensions Obtained by Co-grinding Method

, , , , &
Pages 314-322 | Published online: 25 Sep 2008
 

Abstract

The purpose of this study was to investigate the formation of drug nanoparticles from binary and ternary mixtures, consisting of dihydroartemisinin (DHA), a poorly water-soluble antimalarial drug, with water-soluble polymer and/or surfactant. Binary mixtures of drug/polyvinyl pyrrolidone K30 (PVP K30), binary mixtures of drug/sodium deoxycholate (NaDC), and ternary mixtures of drug/PVP K30/NaDC were prepared at different weight ratios and then ground by vibrating rod mill to obtain ground mixtures. Nanosuspension was successfully formed after dispersing ternary ground mixtures or DHA/NaDC ground mixtures in water. The ternary ground mixtures did not give superior nanosuspension in terms of particle size reduction and recovery of drug nanoparticles, but they provided more physically stable nanosuspensions than DHA/NaDC ground mixtures. The size of drug nanoparticles was decreased with increasing grinding time and lowering amount of PVP K30 and NaDC. About 95% of drug nanoparticles were found in the nanosuspension from ternary ground mixtures. Zeta potential measurement suggested that stable nanosuspension was attributable to adsorption of NaDC and PVP K30 onto surface of drug particles. Atomic force microscopy and transmission electron microscopy with selected area diffraction indicated that DHA in nanosuspension was existed as nanocrystals. The obtained nanosuspensions had higher in vitro antimalarial acitivity against Plasmodium falciparum than microsuspensions. The results suggest that co-grinding of DHA with PVP K30 and NaDC seems to be a promising method to prepare DHA nanosuspension.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.