131
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Preparation and Bioavailability of Sustained-Release Doxofylline Pellets in Beagle Dogs

, , &
Pages 676-682 | Published online: 25 Sep 2008
 

Abstract

The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit® NE30D alone (F1) or blend of Eudragit® RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit® NE30D and a blend of Eudragit® RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit® RL30D/RS30D polymers with proper features as coating materials produced a longer Tmax, a lower Cmax and a little higher bioavailability compared to F1 (coated with Eudragit® NE30D alone). The Cmax, Tmax and relative bioavailability of F1 and F2 coated pellets were 15.16 μg/ml, 4.17 h, 97.69% and 11.41 μg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.