318
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol

, &
Pages 796-807 | Received 27 Aug 2008, Accepted 02 Nov 2008, Published online: 19 May 2009
 

Abstract

Background: Unknown influence of cyclodextrin on the properties of the film formulation aimed for buccal application. Aim: Development and characterization of a novel bioadhesive film formulation for buccal atenolol delivery containing drug/cyclodextrin inclusion. Method: Interaction between atenolol and randomly methylated β-cyclodextrin (RAMEB) in solution was studied by phase solubility studies. The complex in solid state was prepared by the freeze-drying method and characterized by differential scanning calorimetry and Fourier-transformed infrared spectroscopy (FTIR). The drug, free or in complex form, was incorporated into polymeric films prepared by the casting method using ethylcellulose (EC), polyvinyl alcohol (PVA), and hydroxypropyl methylcellulose (HPMC). The prepared film formulations were characterized in terms of swelling, bioadhesion, and in vitro drug release. Results: The formation of a stabile inclusion complex (Ks = 783.4 ± 21.6 M−1) in 1:1 molar stoichiometry was confirmed in solution and in solid state. The swelling properties of films were predominated by the type of polymer used in the formulation. In vitro bioadhesive properties of the films were well correlated with the swelling properties of the polymers used in the formulation. Although incorporation of the drug, free or in complex form, decreased the bioadhesion of the films, PVA- and HPMC-based formulations retained suitable bioadhesive properties. Higher atenolol solubility upon complexation with RAMEB increased the drug dissolution rate under conditions designed to be similar to those on the buccal mucosa, but it has decreased the drug release rate from the PVA and HPMC film formulation, leading to a sustained drug release pattern. In the case of EC-based films, RAMEB promoted drug release. Other parameters that influenced the drug release rate were associated with the structure of the polymer used in the formulation, swelling characteristics of the films, and the interaction between atenolol and hydrophilic polymers that was demonstrated by FTIR analysis. Conclusion: Incorporation of atenolol in the form of an inclusion complex into hydrophilic films may be an appropriate strategy to prepare a suitable formulation for buccal drug delivery.

Acknowledgments

The authors would like to thank Dr. Biserka Cetina-Čižmek and Michaela Horvat (Pliva, a member of the Barr Group, Croatia) for their valuable help with thermal analysis.

Declaration of interest: The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.