143
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Viscosity reduction of isotonic solutions of the photosensitizer TPCS2a by cyclodextrin complexation

, &
Pages 261-265 | Received 07 Aug 2017, Accepted 22 Sep 2017, Published online: 17 Oct 2017
 

Abstract

Meso-tetraphenyl chlorin disulphonate (TPCS2a) is a photosensitizer (PS) particularly developed and patented for use in the technology of photochemical internalization (PCI) against cancer. TPCS2a is known to aggregate in aqueous media even at low concentrations (≥0.1 µM) and to form a high-viscosity network at clinically relevant concentrations (mM). The aim of this work was to evaluate the effect of two hydroxypropylated cyclodextrin derivatives of beta and gamma type, respectively i.e. HPβCD and HPγCD, on the aggregation and solubilization of TPCS2a in isotonic solutions. Samples containing micromolar concentrations of TPCS2a were studied spectrophotometrically, while samples containing a clinical relevant concentration (10 mM = 9 mg/ml) of TPCS2a were evaluated by dynamic viscosity measurements. HPβCD was determined to be a more suitable solubilizer of TPCS2a than HPγCD in aqueous media both in the absence and presence of salt. The complexation stoichiometry between TPCS2a/HPβCD at micromolar to millimolar concentrations of TPCS2a was determined to be 1:3 and 1:2 in the absence and presence of isotonic NaCl, respectively. The network of TPCS2a (10 mM) was broken down in the presence of 3% w/v (= 20 mM) HPβCD, i.e. a 1:2 molar ratio between TPCS2a and the cyclodextrin. Formation of the inclusion complex resulted in low viscosity samples both in water and in the presence of isotonic NaCl or phosphate buffered saline (PBS) at 25 °C and 37 °C.

Acknowledgements

The authors are grateful to I. Grove, School of Pharmacy, University of Oslo, for technical assistance with the HPγCD absorption data. Authors thank G. Holm, The Faculty of Mathematics and Natural Sciences, University of Oslo, for assistance with graphical design.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.