405
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Development and in vitro/in vivo evaluation of HPMC/chitosan gel containing simvastatin loaded self-assembled nanomicelles as a potent wound healing agent

, , , &
Pages 276-288 | Received 24 Feb 2017, Accepted 05 Oct 2017, Published online: 15 Nov 2017
 

Abstract

The aim of this study was to develop hydroxypropyl methyl cellulose (HPMC)/chitosan gel containing polymeric micelles loaded with simvastatin (Sim) and evaluates its wound healing properties in rats. An irregular full factorial design was employed to evaluate the effects of various formulation variables including polymer/drug ratio, hydration temperature, hydration time, and organic solvent type on the physicochemical characteristics of pluronic F127-cholesterol nanomicelles prepared using the film hydration method. Among single studied factors, solvent type had the most impact on the amount of drug loading and zeta potential. Particle size and release efficiency was more affected by hydration temperature. The optimized formulation suggested by desirability of 93.5% was prepared using 1 mg of Sim, 10 mg of copolymer, dichloromethane as the organic solvent, hydration time of 45 min and hydration temperature of 25 °C. The release of the drug from nanomicelles was found to be biphasic and showed a rapid release in the first stage followed by a sustained release for 96 h. The gel-contained nanomicelles exhibited pseudo-plastic flow and more sustained drug release profile compared to nanomicelles. In excision wound model on normal rats, the wound closure of the group treated by Sim loaded micelles-gel was superior to other groups. Taken together, Sim loaded micelles-gel may represent a novel topical formulation for wound healing.

Acknowledgements

The authors wish to thank the Research Vice Chancellery of Isfahan University of Medical Sciences for supporting this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.