281
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Process, optimization, and characterization of budesonide-loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease

, , , &
Pages 1078-1089 | Received 14 Aug 2017, Accepted 25 Jan 2018, Published online: 06 Feb 2018
 

Abstract

The major challenge involved in the treatment of inflammatory bowel disease is targeted delivery of the drug at the site of inflammation. As nanoparticles possess the ability to accumulate at the site of inflammation, present investigation aims at development of Budesonide-loaded nanostructured lipid carrier systems (BDS-NLCs) for the treatment of inflammatory bowel disease. BDS-NLCs were prepared by employing a high pressure homogenization technique. Various preliminary trials were performed for optimization of the NLCs in which different processes, as well as formulation parameters, were studied. The BDS-NLCs was optimized statistically by applying a 3-factor/3-level Box–Behnken design. Drug concentration, surfactant concentration, and emulsifier concentration were selected as independent variables, and % entrapment efficiency and particle size were selected as dependent variables. The best batch comprises of 10%, 7%, and 20% w/w concentration of drug, surfactant, and emulsifier, respectively, with % entrapment efficiency of 92.66 ± 3.42% and particle size of 284.0 ± 4.53 nm. Further, in order to achieve effective delivery of nanoparticulate system to colonic region, the developed BDS-NLCs were encapsulated in Eudragit® S100-coated pellets. The drug release studies of pellets depict intactness of BDS-NLCs during palletization process, with f2 value of 75.879. The in vitro evaluation of enteric-coated pellets revealed that a coating level of 15% weight gain is needed in order to impart lag time of 5 h (transit time to reach colon). The results of the study demonstrate that the developed BDS-NLCs could be used as a promising tool for the treatment of inflammatory bowel disease.

Acknowledgments

The authors are highly thankful to Department of Science and Technology (DST). The authors are thankful to Nirma University, Ahmedabad, India for providing necessary facilities to carry out the research work.

Disclosure statement

The authors report no declarations of interest.

Additional information

Funding

Fund for Improvement of S&T Infrastructure (FIST) [Grant No.: SR/FST/LSI-607/2014], Government of India, for providing the necessary funding to establish equipment facility.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.